版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥滨县第一中学2026届高一上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个2.下列函数是幂函数的是()A. B.C. D.3.已知全集,,,则集合A. B.C. D.4.已知角的终边上一点,且,则()A. B.C. D.5.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.已知函数则()A.- B.2C.4 D.117.设,,,则a,b,c的大小关系为()A. B.C. D.8.函数,x∈R在()A.上是增函数B.上是减函数C.上是减函数D.上是减函数9.函数lgx=3,则x=()A1000 B.100C.310 D.3010.已知角的终边经过点,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆,圆,则两圆公切线的方程为__________12.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________13.命题,,则为______.14.的化简结果为____________15.若直线:与直线:互相垂直,则实数的值为__________16.已知,,则的最小值是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)设,求函数的最大值和最小值;(2)设函数为偶函数,求的值,并求函数的单调增区间18.已知函数,实数且(1)设,判断函数在上的单调性,并说明理由;(2)设且时,的定义域和值域都是,求的最大值19.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.20.已知甲乙两人的投篮命中率分别为,如果这两人每人投篮一次,求:(1)两人都命中的概率;(2)两人中恰有一人命中的概率.21.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【点睛】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题2、C【解析】由幂函数定义可直接得到结果.【详解】形如的函数为幂函数,则为幂函数.故选:C.3、D【解析】因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.4、B【解析】由三角函数的定义可列方程解出,需注意的范围【详解】由三角函数定义,解得,由,知,则.故选:B.5、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.6、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.7、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A8、B【解析】化简,根据余弦函数知识确定正确选项.【详解】,所以在上递增,在上递减.B正确,ACD选项错误.故选:B9、A【解析】由lgx=3,可得直接计算出结果.【详解】由lgx=3,有:则,故选:A【点睛】本题考查对数的定义,属于基础题.10、C【解析】因为点在单位圆上,又在角的终边上,所以;则;故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】圆,圆心为(0,0),半径为1;圆,圆心为(4,0),半径为5.圆心距为4=5-1,故两圆内切.切点为(-1,0),圆心连线为x轴,所以两圆公切线的方程为,即.故答案.12、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:313、,【解析】由全称命题的否定即可得解.【详解】因为命题为全称命题,所以为“,”.故答案为:,.14、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.15、-2【解析】由于两条直线垂直,故.16、【解析】化简函数,由,得到,结合三角函数的性质,即可求解.【详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),【解析】(1)化简f(x)解析式,利用正弦函数的图像特性即可求其最大值和最小值;(2)根据正弦型函数为偶函数可知,,据此即可求出,再根据正弦函数单调性即可求g(x)的单调增区间.【小问1详解】,∵,,∴,∴函数最大值为,最小值为【小问2详解】,∵该函数为偶函数,∴,得,又∵,∴k取0,,∴,令,解得,从而得到其增区间为18、(1)在上单调递增,理由见解析(2)【解析】(1)由定义法直接证明可得;(2)由题知是方程的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a的范围,再用韦达定理表示出所求,然后可解.【小问1详解】设,则,,,,故在上单调递增;【小问2详解】由(1)可得时,在上单调递增,的定义域和值域都是,,则是方程的不相等的两个正数根,即有两个不相等的正数根,则,解得,,,时,最大值为;19、选择见解析;(1);(2)单调递减区间为.【解析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函数在上的单调递减区间为.【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式
函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.
对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sint的性质20、(1)0.56;(2)0.38.【解析】(1)利用相互独立事件概率计算公式,求得两人都命中的概率.(2)利用互斥事件概率公式和相互独立事件概率计算公式,求得恰有一人命中的概率.【详解】记事件A,B分别为“甲投篮命中",“乙投篮命中”,则.(1)“两人都命中”为事件AB,由于A,B相互独立,所以,即两人都命中的概率为0.56.(2)由于互斥且A,B相互独立,所以恰有1人命中概率为.即恰有一人命中的概率为0.38.【点睛】关键点睛:本小题主要考查相互独立事件概率计算,考查互斥事件概率公式,关键在于准确地理解题意和运用公式求解.21、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我国上市公司独立董事激励机制:现状、问题与优化路径
- 罐头原料处理工安全知识评优考核试卷含答案
- 常减压蒸馏装置操作工岗前基础验收考核试卷含答案
- 驯马工班组建设知识考核试卷含答案
- 西式糕点师安全教育考核试卷含答案
- 老年类风湿关节炎非语言痛苦管理方案
- 老年科压疮相关暴露处理培训
- 酸性气体吸收工发展趋势能力考核试卷含答案
- 名人简介教学课件
- 谷歌AI系统参考模版指南
- 重点传染病诊断标准培训诊断标准
- 机柜端口对应表
- GB/T 3934-2003普通螺纹量规技术条件
- 兰渝铁路指导性施工组织设计
- CJJ82-2019-园林绿化工程施工及验收规范
- 小学三年级阅读练习题《鸭儿饺子铺》原文及答案
- 六宫格数独100题
- 杭州电子招投标系统使用办法
- 车辆赠与协议模板
- CG5重力仪操作手册
- 电解铝项目投资计划书(范文)
评论
0/150
提交评论