内蒙古自治区包头市三十三中2026届高二数学第一学期期末达标检测试题含解析_第1页
内蒙古自治区包头市三十三中2026届高二数学第一学期期末达标检测试题含解析_第2页
内蒙古自治区包头市三十三中2026届高二数学第一学期期末达标检测试题含解析_第3页
内蒙古自治区包头市三十三中2026届高二数学第一学期期末达标检测试题含解析_第4页
内蒙古自治区包头市三十三中2026届高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区包头市三十三中2026届高二数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆截直线所得弦的最短长度为()A.2 B.C. D.42.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.3.算盘是中国传统计算工具,是中国人在长期使用算筹的基础上发明的,“珠算”一词最早见于东汉徐岳所撰的《数术记遗》,其中有云:“珠算控带四时,经纬三才.”北周甄鸾为此作注,大意是:把木板刻为3部分,上、下两部分是停游珠用的,中间一部分是作定位用的.下图是一把算盘的初始状态,自右向左,分别是个位、十位、百位…,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)是1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位和十位这两组中随机选择往下拨一粒上珠,往上拨3粒下珠,得到的数为质数(除了1和本身没有其它的约数)的概率是()A. B.C. D.4.运行如图所示程序后,输出的结果为()A.15 B.17C.19 D.215.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.6.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.327.若曲线的一条切线与直线垂直,则的方程为()A. B.C. D.8.已知平面,的法向量分别为,,则()A. B.C.,相交但不垂直 D.,的位置关系不确定9.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.10.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.711.椭圆的焦点为、,上顶点为,若,则()A B.C. D.12.函数的大致图象为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C,直线l:,若圆C上恰有四个点到直线l的距离都等于1.则b的取值范围为___.14.已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______15.定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.16.已知数列满足:,,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.18.(12分)如图,第1个图形需要4根火柴,第2个图形需要7根火柴,,设第n个图形需要根火柴(1)试写出,并求;(2)记前n个图形所需的火柴总根数为,设,求数列的前n项和19.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)记,求数列的前项和20.(12分)已知函数.(1)当时,求函数的极大值与极小值;(2)若函数在上的最大值是最小值的3倍,求a的值.21.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值22.(10分)已知椭圆的离心率为,右焦点F到上顶点的距离为.(1)求椭圆的方程;(2)是否存在过点F且与x轴不垂直的直线与椭圆交于A、B两点,使得点C()在线段AB的中垂线上?若存在,求出直线l:若不存在,说明理曲.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题知直线过定点,且在圆内,进而求解最值即可.【详解】解:将直线化为,所以联立方程得所以直线过定点将化为标准方程得,即圆心为,半径为,由于,所以点在圆内,所以点与圆圆心间的距离为,所以圆截直线所得弦的最短长度为故选:A2、B【解析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【点睛】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.3、B【解析】根据古典概型概率计算公式,计算出所求的概率.【详解】依题有,算盘所表示的数可能有:17,26,8,35,62,71,80,53,其中是质数的有:17,71,53,故所求事件的概率为故选:B4、D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D5、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:6、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.7、A【解析】两直线垂直,斜率之积为,曲线与直线相切,联立方程令.【详解】法一:直线,所以,所以切线的,设切线的方程为,联立方程,所以,令,解得,所以切线方程为.法二:直线,所以,所以切线的,,所以令,所以,带入曲线方程得切点坐标为,所以切线方程为,化简得.故选:A.8、C【解析】利用向量法判断平面与平面的位置关系.【详解】因为平面,的法向量分别为,,所以,即不垂直,则,不垂直,因为,即即不平行,则,不平行,所以,相交但不垂直,故选:C9、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.10、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D11、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.12、D【解析】根据函数奇偶性排除A、C.当时排除B【详解】解:由可得所以函数为偶函数,排除A、C.因为时,,排除B.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆的几何性质,结合点到直线距离公式进行求解即可.【详解】圆C:的半径为3,圆心坐标为:设圆心到直线l:的距离为,要想圆C上恰有四个点到直线l的距离都等于1,只需,即,所以.故答案为:.14、【解析】设出动点,根据已知条件得到关于的方程.【详解】设,由,有,得,所以,由得:,所以点的轨迹的方程是.故答案为:15、①.②.【解析】(1)根据“新驻点”的定义求得,结合可得出结果;(2)求出的值,利用零点存在定理判断所在的区间,进而可得出与的大小关系.详解】(1),,根据“新驻点”的定义得,即,可得,,解得,所以,函数在上的“新驻点”为;(2),则,根据“新驻点”的定义得,即.,则,由“新驻点”的定义得,即,构造函数,则函数在定义域上为增函数,,,,由零点存在定理可知,,.故答案为:(1);(2).【点睛】本题考查导数的计算,是新定义的题型,关键是理解“新驻点”的定义.16、.【解析】运用累和法,结合等差数列前项和公式进行求解即可.【详解】因为,,所以当时,有,因此有:,即,当时,适合上式,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为,由,,成等比数列可知,即,化简得.由可得,所以.将代入,得,,所以.小问2详解】解:由(1)得,所以.18、(1),;(2).【解析】(1)根据题设找到规律写出,由等差数列的定义求.(2)由等差数列前n项和求,再利用裂项相消法求.【小问1详解】由题意知:,,,,可得每增加一个正方形,火柴增加3根,即,所以数列是以4为首项,以3为公差的等差数列,则.【小问2详解】由题意可知,,所以,则,所以,,即19、(1)(2)【解析】(1)结合作差法可直接求解;(2)由错位相减法可直接求解.【小问1详解】当时,;当时,,当时,满足上式,所以;【小问2详解】由(1)知,所以①,②,①-②得,所以.20、(1)的极大值为0,的极小值为(2)2【解析】(1)先求导可得,再利用导函数判断的单调性,进而求解;(2)由(1)可得在上的最小值为,由,,可得的最大值为,进而根据求解即可.【详解】解:(1)当时,,所以,令,则或,则当和时,;当时,,则在和上单调递增,在上单调递减,所以极大值为;的极小值为.(2)由题,,由(1)可得在上单调递减,在上单调递增,所以的最小值即为的极小值;因为,,所以,因为,则,所以.【点睛】本题考查利用导函数求函数的极值,考查利用导函数求函数的最值,考查运算能力.21、(1),(2)【解析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论