2026届哈尔滨市第六中学高三数学第一学期期末学业水平测试试题含解析_第1页
2026届哈尔滨市第六中学高三数学第一学期期末学业水平测试试题含解析_第2页
2026届哈尔滨市第六中学高三数学第一学期期末学业水平测试试题含解析_第3页
2026届哈尔滨市第六中学高三数学第一学期期末学业水平测试试题含解析_第4页
2026届哈尔滨市第六中学高三数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届哈尔滨市第六中学高三数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A. B. C. D.2.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.3.在正方体中,,分别为,的中点,则异面直线,所成角的余弦值为()A. B. C. D.4.命题“”的否定为()A. B.C. D.5.若复数满足,则()A. B. C. D.6.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.7.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.8.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.209.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.10.设命题p:>1,n2>2n,则p为()A. B.C. D.11.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.12.已知复数,若,则的值为()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最大值为__________.14.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.15.已知公差大于零的等差数列中,、、依次成等比数列,则的值是__________.16.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,,的对边分别为,,,且,,求边上的高的最大值.18.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数).(1)求数列,的通项公式;(2)求数列的前n项和.19.(12分)已知正数x,y,z满足xyzt(t为常数),且的最小值为,求实数t的值.20.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)21.(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.22.(10分)在△ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b=7,D是BC边上的点,且△ACD的面积为,求sin∠ADB.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.【详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,,当且仅当共线时取等号,∴所求最小值为.故选:C.【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.2、A【解析】

根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.3、D【解析】

连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,,在等腰中,取的中点为,连接,则,,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.4、C【解析】

套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.5、C【解析】

把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【详解】解:由,得,∴.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.6、C【解析】

设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.7、D【解析】

求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.8、C【解析】

利用等差通项,设出和,然后,直接求解即可【详解】令,则,,∴,,∴.【点睛】本题考查等差数列的求和问题,属于基础题9、D【解析】

先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.10、C【解析】根据命题的否定,可以写出:,所以选C.11、D【解析】

根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.12、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】

作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.14、【解析】

采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.15、【解析】

利用等差数列的通项公式以及等比中项的性质,化简求出公差与的关系,然后转化求解的值.【详解】设等差数列的公差为,则,由于、、依次成等比数列,则,即,,解得,因此,.故答案为:.【点睛】本题考查等差数列通项公式以及等比中项的应用,考查计算能力,属于基础题.16、1【解析】

由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积.【详解】如图,作,交于,,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:.故答案为:1.【点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的最小正周期为:;函数单调递增区间为:;(2).【解析】

(1)根据诱导公式,结合二倍角的正弦公式、辅助角公式把函数的解析式化简成余弦型函数解析式形式,利用余弦型函数的最小正周期公式和单调性进行求解即可;(2)由(1)结合,求出的大小,再根据三角形面积公式,结合余弦定理和基本不等式进行求解即可.【详解】(1)的最小正周期为:;当时,即当时,函数单调递增,所以函数单调递增区间为:;(2)因为,所以设边上的高为,所以有,由余弦定理可知:(当用仅当时,取等号),所以,因此边上的高的最大值.【点睛】本题考查了正弦的二倍角公式、诱导公式、辅助角公式,考查了余弦定理、三角形面积公式,考查了基本不等式的应用,考查了数学运算能力.18、(1),(2)【解析】

(1)当时,,与作差可得,即可得到数列是首项为1,公差为1的等差数列,即可求解;对取自然对数,则,即是以1为首项,以2为公比的等比数列,即可求解;(2)由(1)可得,再利用错位相减法求解即可.【详解】解:(1)因为,,①当时,,解得;当时,有,②由①②得,,又,所以,即数列是首项为1,公差为1的等差数列,故,又因为,且,取自然对数得,所以,又因为,所以是以1为首项,以2为公比的等比数列,所以,即(2)由(1)知,,所以,③,④③减去④得:,所以【点睛】本题考查由与的关系求通项公式,考查错位相减法求数列的和.19、t=1【解析】

把变形为结合基本不等式进行求解.【详解】因为即,当且仅当,,时,上述等号成立,所以,即,又x,y,z>0,所以xyzt=1.【点睛】本题主要考查基本不等式的应用,利用基本不等式求解最值时要注意转化为适用形式,同时要关注不等号是否成立,侧重考查数学运算的核心素养.20、(1)分布列见解析;(2)406.【解析】

(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,,所以的分布列为:(2)方案②中.结合(1)知每个人的平均化验次数为:时,,此时1000人需要化验的总次数为690次,时,,此时1000人需要化验的总次数为604次,时,,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当时化验次数最多可以平均减少次.【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.21、(1)证明见解析(2)【解析】

(1)先证明EF平面,即可求证;(2)根据二面角的余弦值,可得平面,以为坐标原点,建立空间直角坐标系,利用向量计算线面角即可.【详解】(1)连接,交于点,连结.则,故面.又面,因此.(2)由(1)知即为二面角的平面角,且.在中应用余弦定理,得,于是有,即,从而有平面.以为坐标原点,建立如图所示的空间直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论