版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届北京市第四中学顺义分校高一上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两条绳子提起一个物体处于平衡状态.若这两条绳子互相垂直,其中一条绳子的拉力为50,且与两绳拉力的合力的夹角为30°,则另一条绳子的拉力为()A.100 B.C.50 D.2.若正数x,y满足,则的最小值为()A.4 B.C.8 D.93.若角的终边过点,则A. B.C. D.4.命题“任意,都有”的否定为()A.存在,使得B.不存在,使得C.存在,使得D.对任意,都有5.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)6.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.247.下列函数中,与的奇偶性相同,且在上单调性也相同的是()A. B.C. D.8.设,且,则等于()A.100 B.C. D.9.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.10.已知函数则值域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间,上恒有则实数的取值范围是_____.12.给出以下四个结论:①若函数的定义域为,则函数的定义域是;②函数(其中,且)图象过定点;③当时,幂函数的图象是一条直线;④若,则的取值范围是;⑤若函数在区间上单调递减,则的取值范围是.其中所有正确结论的序号是___________.13.如图所示,弧田是由圆弧和其所对弦围成的图形,若弧田的弧长为,弧所在的圆的半径为4,则弧田的面积是___________.14.幂函数的图像经过点,则的值为____15.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).16.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.18.已知函数,(1)若的值域为,求a的值(2)证明:对任意,总存在,使得成立19.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.20.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;21.假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间.问:离家前不能看到报纸(称事件)的概率是多少?(须有过程)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用向量的平行四边形法则求解即可【详解】如图,两条绳子提起一个物体处于平衡状态,不妨设,根据向量的平行四边形法则,故选:D2、C【解析】由已知可得,然后利用基本不等式可求得结果【详解】解:因为正数x,y满足,所以,当且仅当,即时取等号,所以的最小值为8,故选:C【点睛】此题考查基本不等式应用,利用了“1”的代换,属于基础题3、D【解析】角的终边过点,所以.由角,得.故选D.4、A【解析】根据全称量词命题的否定为特称量词命题,改量词,否结论,即得答案.【详解】命题“任意,都有”的否定为“存在,使得”,故选:A5、A【解析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【点睛】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题6、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A7、C【解析】先求得函数的奇偶性和单调性,结合选项,利用函数的性质和单调性的定义,逐项判定,即可求解.【详解】由题意,函数满足,所以函数为偶函数,当时,可得,结合指数函数的性质,可得函数为单调递增函数,对于A中,函数为奇函数,不符合题意;对于B中,函数为非奇非偶函数函数,不符合题意;对于C中,函数的定义域为,且满足,所以函数为偶函数,设,且时,则,因为且,所以,所以,即,所以在为增函数,符合题意;对于D中,函数为非奇非偶函数函数,不符合题意.故选:C.8、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C9、D【解析】根据直线的斜率与倾斜角的关系即可求解.【详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.10、C【解析】先求的范围,再求的值域.【详解】令,则,则,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据对数函数的图象和性质可得,函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,即,或,分别解不等式组,可得答案【详解】若函数f(x)=loga(2x﹣a)在区间[]上恒有f(x)>0,则,或当时,解得<a<1,当时,不等式无解.综上实数的取值范围是(,1)故答案为(,1).【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.12、①④⑤【解析】根据抽象函数的定义域,对数函数的性质、幂函数的定义、对数不等式的求解方法,以及复合函数单调性的讨论,对每一项进行逐一分析,即可判断和选择.【详解】对①:因为,,所以的定义域为,令,故,即的定义域为,故①正确;对②:当,,图象恒过定点,故②错误;对③:若,则的图象是两条射线,故③错误;对④:原不等式等价于,故(无解)或,解得,故④正确;对⑤:实数应满足,解得,故⑤正确;综上所述:正确结论的序号为①④⑤.【点睛】(1)抽象函数的定义域是一个难点,一般地,如果已知的定义域为,的定义域为,那么的定义域为;如果已知的定义域为,那么的定义域可取为.(2)形如的复合函数,如果已知其在某区间上是单调函数,我们不仅要考虑在给定区间上单调性,还要考虑到其在给定区间上总有成立.13、【解析】根据题意得,进而根据扇形面积公式计算即可得答案.【详解】解:根据题意,只需计算图中阴影部分的面积,设,因为弧田的弧长为,弧所在的圆的半径为4,所以,所以阴影部分的面积为所以弧田的面积是.故答案为:14、2【解析】因为幂函数,因此可知f()=215、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.16、①②④【解析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【点睛】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.②证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.【点睛】主要考查对诱导公式的掌握以及推导过程,熟练运用任意角三角函数的定义,属于基础题.18、(1)2(2)证明见解析【解析】(1)由题意,可得,从而即可求解;(2)利用对勾函数单调性求出在上的值域,再分三种情况讨论二次函数在闭区间上的值域,然后证明的值域是值域的子集恒成立即可得证.【小问1详解】解:因为的值域为,所以,解得【小问2详解】证明:由题意,根据对勾函数的单调性可得在上单调递增,所以设在上的值域为M,当,即时,在上单调递增,因为,,所以;当,即时,在上单调递减,因为,,所以;当,即时,,,所以;综上,恒成立,即在上的值域是在上值域的子集恒成立,所以对任意总存在,使得成立.19、(1);(2)答案见解析.【解析】(1)根据二次函数图象的性质确定参数a的取值区间;(2)确定方程的根或,讨论两根的大小关系得出不等式的解集.【详解】(1)因为函数的图象为开口向上的抛物线,其对称轴为直线由二次函数图象可知,的单调增区间为因为在上单调递增,所以所以,所以实数的取值区间是;(2)由得:方程的根为或①当时,,不等式的解集是②当时,,不等式的解集是③当时,,不等式的解集是综上,①当时,不等式的解集是②当时,不等式的解集是③当时,不等式的解集是20、(1)(2)【解析】(1)取中点,连结、,则是侧面与底面所成的二面角,由此能求出侧面与底面所成的二面角(2)连结,,则是异面直线与所成角(或所成角的补角),由此能求出异面直线与所成角的正切值【详解】解:(1)取中点,连结、,正四棱锥中,为底面正方形的中心,,,是侧面与底面所成的二面角,侧棱与底面所成的角的正切值为,设,得,,,,,侧面与底面所成的二面角为(2)为底面正方形的中心,是中点,连结,,是的中点,,是异面直线与所成角(或所成角的补角),,,,,异面直线与所成角的正切值为21、.【解析】设送报人到达的时间为X,小王离家去工作的时间为Y,(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|6≤X≤8,7≤Y≤9}一个正方形区域,求出其面积,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}
求出其面积,根据几何概型的概率公式解之即可;试题解析:如图,设送报人到达的时间为,小王离家去工作的时间为.(,)可以看成平面中的点,试验的全部结果所构成的区域为一个正方形区域,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡镇卫生院谈话告知制度
- 疫情后客房卫生管理制度
- 职业卫生防噪声管理制度
- 交通运输协会制度
- 二手车交易制度
- 集成电路设计可靠性设计保障手册
- 保密协议2026年财务数据版
- 老年黄斑变性患者社交技能重建方案
- 产品设计流程与方法手册
- 老年高血压患者家庭血压监测与中医情志调摄方案
- GB/T 22900-2022科学技术研究项目评价通则
- GB/T 17880.6-1999铆螺母技术条件
- SB/T 11094-2014中药材仓储管理规范
- GB/T 6418-2008铜基钎料
- GB/T 3452.4-2020液压气动用O形橡胶密封圈第4部分:抗挤压环(挡环)
- GB/T 16621-1996母树林营建技术
- GB/T 14518-1993胶粘剂的pH值测定
- GB/T 14072-1993林木种质资源保存原则与方法
- GA/T 1310-2016法庭科学笔迹鉴定意见规范
- 垃圾分类科普指南课件(21张PPT)
- DB37-T 4328-2021 建筑消防设施维护保养技术规程
评论
0/150
提交评论