山东省滨州市五校联考2026届数学高一上期末学业质量监测模拟试题含解析_第1页
山东省滨州市五校联考2026届数学高一上期末学业质量监测模拟试题含解析_第2页
山东省滨州市五校联考2026届数学高一上期末学业质量监测模拟试题含解析_第3页
山东省滨州市五校联考2026届数学高一上期末学业质量监测模拟试题含解析_第4页
山东省滨州市五校联考2026届数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市五校联考2026届数学高一上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“的最小正周期为”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知角的终边过点,则()A. B.C. D.13.若直线与曲线有两个不同的交点,则实数的取值范围为A. B.C. D.4.已知,,,则a,b,c的大小关系是()A. B.C. D.5.已知,则为()A. B.2C.3 D.或36.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个7.已知函数,若,则函数的单调递减区间是A. B.C. D.8.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.9.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C D.10.为了得到函数的图象,可以将函数的图象A.向右平移 B.向右平移C.向左平移 D.向左平移二、填空题:本大题共6小题,每小题5分,共30分。11.若,,且,则的最小值为__________12.直线关于定点对称的直线方程是_________13.计算:________.14.已知定义域为的奇函数,则的解集为__________.15.已知,那么的值为___________.16.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙、丙三人打靶,他们的命中率分别为,若三人同时射击一个目标,甲、丙击中目标而乙没有击中目标的概率为,乙击中目标而丙没有击中目标的概率为.设事件A表示“甲击中目标”,事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,B,C是相互独立事件.(1)求;(2)写出事件包含的所有互斥事件,并求事件发生的概率.18.若是从四个数中任取的一个数,是从三个数中任取的一个数(1)求事件“”的概率;(2)求事件“方程有实数根”的概率19.已知向量满足,.(1)若的夹角为,求;(2)若,求与的夹角.20.计算:21.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数的最小正周期求得,再根据充分条件和必要条件的定义即可的解.【详解】解:由的最小正周期为,可得,所以,所以“”是“的最小正周期为”的充分不必要条件.故选:A.2、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B3、D【解析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时m值为,直线与曲线有两个交点时的m值为1,则故选D4、B【解析】根据指数函数的单调性分析出的范围,根据对数函数的单调性分析出的范围,结合中间值,即可判断出的大小关系.【详解】因为在上单调递减,所以,所以,又因为且在上单调递增,所以,所以,又因为在上单调递减,所以,所以,综上可知:,故选:B.【点睛】方法点睛:常见的比较大小的方法:(1)作差法:作差与作比较;(2)作商法:作商与作比较(注意正负);(3)函数单调性法:根据函数单调性比较大小;(4)中间值法:取中间值进行大小比较.5、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C6、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.7、D【解析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【点睛】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性8、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.9、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x的不等式,属于基础题10、B【解析】先将,进而由平移变换规律可得解.【详解】函数,所以只需将向右平移可得.故选B.【点睛】本题主要考查了三角函数的图像平移变换,解题的关键是将函数名统一,需要利用诱导公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.12、【解析】先求出原直线上一个点关于定点的对称点,然后用对称后的直线与原直线平行【详解】在直线上取点,点关于的对称点为过与原直线平行的直线方程为,即为对称后的直线故答案为:13、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题14、【解析】根据奇函数的性质及定义域的对称性,求得参数a,b的值,求得函数解析式,并判断单调性.等价于,根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.【详解】由题知,,则恒成立,即,,又定义域应关于原点对称,则,解得,因此,,易知函数单增,故等价于即,解得故答案为:15、##0.8【解析】由诱导公式直接可得.详解】.故答案为:16、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)互斥事件有:,【解析】(1)根据相互独立事件的乘法公式列方程即可求得.(2)直接写出事件包含的互斥事件,并利用对立事件的概率公式求事件发生的概率即可.【小问1详解】由题意知,A,B,C为相互独立事件,所以甲、丙击中目标而乙没有击中目标的概率乙击中目标而丙没有击中目标的概率,解得,.【小问2详解】事件包含的互斥事件有:,.18、(1)(2)【解析】(1)利用列举法求解,先列出取两数的所有情况,再找出满足的情况,然后根据古典概型的概率公式求解即可,(2)由题意可得,再根据对立事件的概率公式求解【小问1详解】设事件表示“”因为是从四个数中任取的一个数,是从三个数中任取的一个数所以样本点一共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示的取值,第二个数表示的取值符合古典概型模型,事件包含其中3个样本点,故事件发生的概率为【小问2详解】若方程有实数根,则需,即记事件“方程有实数根”为事件,由(1)知,故19、(1)(2)【解析】(1)利用公式即可求得;(2)利用向量垂直的等价条件以及夹角公式即可求解.【详解】解:(1)由已知,得,所以,所以.(2)因为,所以.所以,即,所以.又,所以,即与的夹角为.【点睛】主要考查向量模、夹角的求解,数量积的计算以及向量垂直的等价条件的运用.属于基础题.20、(1)(2)0【解析】(1)根据对数的运算法则和幂的运算法则计算(2)根据特殊角三角函数值计算【详解】解:;【点睛】本题考查指数与对数的运算,考查三角函数的计算.属于基础题21、(1);(2)【解析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【详解】解:(1)因为函数在上的单调性相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论