安徽省皖江名校联盟2026届数学高二上期末综合测试模拟试题含解析_第1页
安徽省皖江名校联盟2026届数学高二上期末综合测试模拟试题含解析_第2页
安徽省皖江名校联盟2026届数学高二上期末综合测试模拟试题含解析_第3页
安徽省皖江名校联盟2026届数学高二上期末综合测试模拟试题含解析_第4页
安徽省皖江名校联盟2026届数学高二上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省皖江名校联盟2026届数学高二上期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.2.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.103.设函数,,,则()A. B.C. D.4.已知椭圆的短轴长和焦距相等,则a的值为()A.1 B.C. D.5.若两条直线与互相垂直,则的值为()A.4 B.-4C.1 D.-16.在各项均为正数的等比数列中,若,则()A.6 B.12C.56 D.787.已知奇函数是定义在R上的可导函数,的导函数为,当时,有,则不等式的解集为()A. B.C. D.8.已知集合,则()A. B.C. D.9.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.11.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是12.已知,则的最小值是()A.3 B.8C.12 D.20二、填空题:本题共4小题,每小题5分,共20分。13.若平面法向量,直线的方向向量为,则与所成角的大小为___________.14.直线与直线垂直,则______15.空间四边形中,,,,,,,则与所成角的余弦值等于___________16.圆关于直线的对称圆的标准方程为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.18.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由19.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,20.(12分)经观测,某种昆虫的产卵数y与温度x有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.275731.121.71502368.3630表中,(1)根据散点图判断,与哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据.试求y关于x回归方程.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.21.(12分)等差数列的前项和为,数列是等比数列,满足,,,.(1)求数列和的通项公式;(2)令,设数列的前项和为,求.22.(10分)如图,在三棱锥中,,点P为线段MC上的点(1)若平面PAB,试确定点P的位置,并说明理由;(2)若,,,求三棱锥的体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【点睛】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.2、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.3、A【解析】根据导数得出在的单调性,进而由单调性得出大小关系.【详解】因为,所以在上单调递增.因为,所以,而,所以.因为,且,所以.即.故选:A4、A【解析】由题设及椭圆方程可得,即可求参数a的值.【详解】由题设易知:椭圆参数,即有,可得故选:A5、A【解析】根据两直线垂直的充要条件知:,即可求的值.【详解】由两直线垂直,可知:,即.故选:A6、D【解析】由等比数列的性质直接求得.【详解】在等比数列中,由等比数列的性质可得:由,解得:;由可得:,所以.故选:D7、B【解析】根据给定的不等式构造函数,再探讨函数的性质,借助性质解不等式作答.【详解】依题意,令,因是R上的奇函数,则,即是R上的奇函数,当时,,则有在单调递增,又函数在R上连续,因此,函数在R上单调递增,不等式,于是得,解得,所以原不等式的解集是.故选:B8、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.9、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.10、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D11、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.12、A【解析】利用基本不等式进行求解即可.【详解】因为,所以,当且仅当时取等号,即当时取等号,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】设直线与平面所成角为,则,直接利用直线与平面所成的角的向量计算公式,即可求出直线与平面所成的角【详解】解:已知直线的方向向量为,平面的法向量为,设直线与平面所成角为,则,,,所以直线与平面所成角为.故答案为:.14、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.15、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.16、【解析】先将已知圆的方程化为标准形式,求得圆心坐标(2,2)和半径2,然后可根据直线的位置直接看出(2,2)点的对称点,进而写出方程.【详解】圆的标准方程为,圆心(2,2),半径为2,圆心(2,2)关于直线的对称点为原点,所以所求对称圆标准方程为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.18、(1)证明见解析(2)能为平行四边形;斜率为4-或4+【解析】(1)设两点坐标,由点差法证明(2)求出两点坐标,由平行四边形的几何性质判断【小问1详解】设的斜率为,,两式相减可得,即故【小问2详解】由(1)得的直线为,直线方程为联立,解得联立解得若四边形OAPB为平行四边形,则对角线互相平分为中点,解得,经检验,均符合题意故四边形OAPB能为平行四边形,此时斜率为4-或4+19、(1)①;②证明见解析,(2)最少为6.56吨【解析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所以,所以,因为所以数列是等比数列,首项是,公比是1.02,所以,所以;【小问2详解】解:记为数列的前n项和,,依题,所以,所以m最少为6.56吨20、(1)(2)【解析】(1)根据散点图看出样本点分布在一条指数函数的周围,即可判断;(2)令,利用最小二乘法即可求出y关于x的线性回归方程.【小问1详解】根据散点图判断,看出样本点分布在一条指数函数的周围,所以适宜作为y与x之间的回归方程模型;【小问2详解】令,则,;,∴;∴y关于x的回归方程为.21、(1),(2)【解析】(1)根据条件列关于公差与公比的方程组,解方程组可得再根据等差数列与等比数列通项公式得结果(2)根据错误相减法求数列的前项和为,注意作差时项符号的变化以及求和时项数的确定试题解析:(1)设数列的公差为,数列的公比为,则由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论