版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北武汉武昌区武汉大学附属中学数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有四个关于三角函数的命题::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命题的是A., B.,C., D.,2.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游3.已知关于x的不等式解集为,则下列说法错误的是()A.B.不等式的解集为C.D.不等式的解集为4.函数的一个零点所在的区间是()A. B.C. D.5.若方程的两实根中一个小于,另一个大于,则的取值范围是()A. B.C. D.6.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度得到 B.向右平移个单位长度得到C.向左平移个单位长度得到 D.向右平移个单位长度得到7.已知向量,,若与共线,则等于()A. B.C. D.8.如图,AB为半圆的直径,点C为的中点,点M为线段AB上的一点(含端点A,B),若,则的取值范围是()A. B.C. D.9.若,,,则()A. B.C. D.10.圆和圆的公切线有且仅有条A.1条 B.2条C.3条 D.4条二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则满足的实数的取值范围是__12.若函数在区间上单调递减,则实数的取值范围是__________13.若,,三点共线,则实数的值是__________14.已知函数满足,则________.15.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________16.若“”是“”的必要不充分条件,则实数的取值范围为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)当时,求;(2)若,求实数的取值范围在①;②“”是“”的充分条件;③这三个条件中任选一个,补充到本题第(2)问的横线处,并解答注:如果选择多个条件分别解答,按第一个解答计分18.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率19.自新冠疫情爆发以来,全球遭遇“缺芯”困境,同时以美国为首的西方国家对中国高科技企业进行打压及制裁.在这个艰难的时刻,我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产x(千台)电脑需要另投成本(万元),且,另外,每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元(1)求企业获得年利润(万元)关于年产量x(千台)的函数关系式;(2)当年产量为多少(千台)时,企业所获年利润最大?并求最大年利润20.已知二次函数区间[0,3]上有最大值4,最小值0(1)求函数的解析式;(2)设.若在时恒成立,求k的取值范围21.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】故是假命题;令但故是假命题.2、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.3、D【解析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.【详解】由已知可得-2,3是方程的两根,则由根与系数的关系可得且,解得,所以A正确;对于B,化简为,解得,B正确;对于C,,C正确;对于D,化简为:,解得,D错误故选:D.4、B【解析】先求出根据零点存在性定理得解.【详解】由题得,,所以所以函数一个零点所在的区间是.故选B【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.5、A【解析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】由可得,令,由已知可得,解得,故选:A.6、A【解析】先利用辅助角公式将函数变形,然后利用图象的平移变换分析求解即可【详解】解:函数,将函数图象向左平移个单位可得的图象故选:7、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解析】根据题意可得出,然后根据向量的运算得出,从而可求出答案.【详解】因为点C为的中点,,所以,所以,因为点M为线段AB上的一点,所以,所以,所以的取值范围是,故选:D.9、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A10、C【解析】分析:根据题意,求得两圆的圆心坐标和半径,根据圆心距和两圆的半径的关系,得到两圆相外切,即可得到答案.详解:由题意,圆,可得圆心坐标,半径为圆,可得圆心坐标,半径为,则,所以,所以圆与圆相外切,所以两圆有且仅有三条公切线,故选C.点睛:本题主要考查了圆的方程以及两圆的位置关系的判定,其中熟记两圆位置关系的判定方法是解答的关键,着重考查了推理与运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等12、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案13、5【解析】,,三点共线,,即,解得,故答案为.14、6【解析】由得出方程组,求出函数解析式即可.【详解】因为函数满足,所以,解之得,所以,所以.【点睛】本题主要考查求函数的值,属于基础题型.15、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.16、##【解析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据集合的补集与交集定义运算即可;(2)选①②③中任何一个,都可以转化为,讨论与求解即可【小问1详解】化简集合有当时,,则或故或【小问2详解】选①②③中任何一个,都可以转化为(ⅰ)当时,,即时,(ⅱ)当时,若,则,解得综上(ⅰ)(ⅱ),实数的取值范围是18、(1)15,32.25(2)【解析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案;(2)根据古典概型计算即可求解.【详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23故平均数为:,方差:.(2)从甲比赛得分在分以下的场比赛中随机抽取场,共有15中种不同的取法,其中抽到场都不超过均值的为得分共6种,由古典概型概率公式得.19、(1)(2)当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.【解析】(1)根据2021年共售出10000台平板电板电脑,企业获得年利润为1650万元,求出,进而求出(万元)关于年产量x(千台)的函数关系式;(2)分别求出与所对应的函数关系式的最大值,比较后得到答案.【小问1详解】10000台平板电脑,即10千台,此时,根据题意得:,解得:,故当时,,当时,,综上:;【小问2详解】当时,,当时,取得最大值,;当时,,当且仅当,即时,等号成立,,因为,所以当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.20、(1);(2).【解析】(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式(2)求解的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解【详解】(1)其对称轴x=1,x∈[0,3]上,∴当x=1时,取得最小值为﹣m+n+1=0①当x=3时,取得最大值为3m+n+1=4②由①②解得:m=1,n=0,故得函数的解析式为:;(2)由,令,,则,问题转化为当u∈
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小月龄活动方案策划(3篇)
- 运用库施工方案(3篇)
- 施工方案审签(3篇)
- 烘培充值活动策划方案(3篇)
- 2025-2030整体橱柜产业园区定位规划及招商策略咨询报告
- 2025至2030大数据产业市场发展分析及未来趋势与商业机遇研究报告
- 中国急救设备基层医疗配置缺口与补足路径
- 中国建筑钢结构行业政策支持与市场前景分析报告
- 中国建筑设计行业BIM技术渗透率提升障碍与对策
- 中国建筑装备制造企业ESG表现与可持续发展报告
- 广告传媒项目投标文件范本
- 光伏发电安装质量验收评定表
- 房屋过户给子女的协议书的范文
- 超声振动珩磨装置的总体设计
- 明细账(三栏式、多栏式)电子表格
- 医保违规行为分类培训课件
- 医疗器械法规对互联网销售的限制
- 系杆拱桥系杆预应力施工控制要点
- 三亚市海棠湾椰子洲岛土地价格咨询报告样本及三洲工程造价咨询有限公司管理制度
- TOC供应链物流管理精益化培训教材PPT课件讲义
- 高中心理健康教育-给自己点个赞教学课件设计
评论
0/150
提交评论