版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章动态经济模型:自回归模型和分布滞后模型第一节引言第二节分布滞后模型的估计第三节部分调整模型和适应预期模型第四节自回归模型的估计第五节阿尔蒙多项式分布滞后第六节格兰杰因果关系检验
很多经济过程的实现需要若干周期的时间,因此需要在我们的计量经济模型中引入一个时间维,通常的作法是将滞后经济变量引入模型中。让我们用两个简单的例子说明之。第一节分布滞后模型和自回归模型的概念例1Yt=α+βXt-1+ut,t=1,2,…,n
本例中Y的现期值与X的一期滞后值相联系,比较一般的情况是:
Yt=α+β0Xt+β1Xt-1+……+βsXt-s+ut,t=1,2,…,n
即Y的现期值不仅依赖于X的现期值,而且依赖于X的若干期滞后值。这类模型称为分布滞后模型,因为X变量的影响分布于若干周期。例2Yt=α+βYt-1+ut,t=1,2,…,n
本例中Y的现期值与它自身的一期滞后值相联系,即依赖于它的过去值。一般情况可能是:
Yt=f(Yt-1,Yt-2,…,X2t,X3t,…)即Y的现期值依赖于它自身若干期的滞后值,还依赖于其它解释变量。
在本例中,滞后的因变量作为解释变量出现在方程的右端。这种包含了因变量滞后项的模型称为自回归模型。
动态经济模型我们上面列举了模型中包含滞后经济变量的两种情况。第一种是仅包含滞后自变量的模型,第二种是包含滞后因变量的模型。在两种情况下,都通过一种滞后结构将时间维引入了模型,即实现了动态过程的构模。
第二节分布滞后模型的估计我们在上一节引入了分布滞后模型:
Yt=α+β0Xt+β1Xt-1+……+βsXt-s+ut(1)
在这类模型中,由于在X和它的若干期滞后之间往往存在数据的高度相关,从而导致严重多重共线性问题。因此,分布滞后模型极少按(1)式这样的一般形式被估计。
通常采用对模型各系数βj施加某种先验的约束条件的方法来减少待估计的独立参数的数目,从而解决多重共线性问题。这方面最著名的两种方法是科克(Koyck)方法和阿尔蒙(Almon)方法。一、科克分布滞后模型
科克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即:
Yt=α+βXt+βλXt-1+βλ2Xt-2+…+ut(2)
其中0<λ<1
这实际上是假设无限滞后分布,由于0<λ<1,X的逐次滞后值对Y的影响是逐渐递减的。
从模型可知,滞后系数与及值相关。的值越接近1,滞后系数衰减的速度就越慢;反之,越接近0,滞后系数衰减的速度就越快。
(2)式中仅有三个参数:α、β和λ。但直接估计(2)式是不可能的。这是因为,首先,估计无限多个系数是不可行的。其次,从回归结果中不可能推出β和λ的估计值。估计科克模型的方法幸运的是,我们有同时解决上述两方面问题的方法。它们是:
非线性最小二乘法科克变换法二、非线性最小二乘法
非线性最小二乘法实际上是一种格点搜索法。首先定义λ的范围(如0-1),指定一个步长(如0.01),然后每次增加一个步长,依次考虑0.01,0.02,……0.99。步长越小,结果精确度越高,当然计算的时间也越长。由于目前计算机速度已不是个问题,你可以很容易达到你所要求的精度。(1)对于λ的每个值,计算Zt=Xt+λXt-1+λ2Xt-2+…+λPXt-P(3)
P的选择准则是,λP充分小,使得X的P阶以后滞后值对Z无显著影响。(2)然后回归下面的方程:
Yt=α+βZt+ut(4)(3)
对λ的所有取值重复执行上述步骤,选择回归上述(4)式时产生最高的R2的λ值,则与此λ值相对应的α和β的估计值即为该回归所得到的估计值。非线性最小二乘法步骤三、科克变换法回到科克模型:
Yt=α+βXt+βλXt-1+βλ2Xt-2+…+ut(2)第二种方法是采用科克变换,(2)式两端取一期滞后,得:
Yt-1=α+βXt-1+βλXt-2+βλ2Xt-3+…+ut-1两端乘以λ,得:λYt-1=λα+βλXt-1+βλ2Xt-2+βλ3Xt-3+…+λut-1(5)(2)-(5),得Yt-λYt-1=α(1-λ)+βXt+ut-λut-1(6)所有的X滞后项都消掉了,因此Yt=α(1-λ)+βXt+λYt-1+ut-λut-1(7)(7)式称为自回归模型,因为因变量的滞后作为解释变量出现在方程右边。这一形式使得我们可以很容易分析该模型的短期(即期)和长期动态特性(短期乘数和长期乘数)。
在短期内(即期),Yt-1可以认为是固定的,X的变动对Y的影响为β(短期乘数为β)。
从长期看,在忽略扰动项的情况下,如果Xt趋向于某一均衡水平则Yt和Yt-1也将趋向于某一均衡水平
(6)这意味着(7)
短期乘数和长期乘数
因此,X对Y的长期影响(长期乘数)为β/(1-λ)
若λ位于0和1之间,β/(1-λ)>β,即长期影响大于短期影响。
从实践的观点来看,科克变换模型很有吸引力,一个OLS回归就可得到α、β和λ的估计值(α的估计值是(7)式中的常数项除以1减Yt-1的系数估计值)。这显然比前面介绍的格点搜索法要省时很多,大大简化了计算。1.这一变换展示了我们怎样从一个无限分布滞后模型转换为自回归模型;
2.Yt-1的出现会带来一些统计上的问题。Yt-1是随机的,违背了OLS的假设。Yt-1与扰动项是否存在相关?
3.科克变换后模型的扰动项为ut-λut-1,这带来了自相关问题(这种扰动项称为一阶移动平均扰动项)。科克变换的特点:此问题的存在使得OLS估计量是一个有偏和不一致估计量。这可以说是按下葫芦起了瓢。在这种情况下,可考虑使用工具变量法或极大似然法。也可采用我们介绍的第一种方法——非线性最小二乘法。例1
据统计,受冻害、涝灾等影响,2020年我国梨主产区均出现不同程度的减产,从而市面上梨的供给会减少,导致梨的价格会上涨。那梨的供给减少是如何导致梨的价格上涨呢?
根据现在的储藏水平,梨是可以被储藏很长一段时间的。梨的收获季一般在7-10月,但在市面上基本一年都能买到新鲜的梨。也就是说梨的价格不仅受当期供给的影响,还依赖于去年的存储量和对未来供给的预期。可见自然灾害会影响梨的供给,而供给会影响梨的价格。
下面我们来建立自然灾害(每年涝灾的次数)对梨的价格的影响模型。今年涝灾会影响今年的产量,还会影响明年的存储量。如果梨树受到影响的话,还会影响后面3-5年的产量,因为梨树种植后一般3-5年结果。假设我们收集了1996年至2019年某个梨的主产区的每年涝灾的天数(x)及梨的价格(P)的数据,运用非线性最小二乘法,回归如下:
后面年份计算与此相同。
obsXP19960
19970
19980
19990
2000082001082002082003110.4200409.2200508.6200608.3200708.15200808200908201008201108201208201308201408201508201608201708201808201908
从上述图表可知,由于2003年的涝灾,梨的价格在5期内产生了动荡,体现了动态的效果。
有两个著名的动态经济模型,它们最终可化成与上一节(2)式相同的几何分布滞后形式,因此都是科克类型的模型。它们是:部分调整模型(Partialadjustmentmodel)适应预期模型(Adaptiveexpectationsmodel)第三节部分调整模型和适应预期模型
一、部分调整模型
在部分调整模型中,假设行为方程决定的是因变量的理想值(desiredvalue)或目标值Yt*,而不是其实际值Yt:
Yt*=α+βXt+ut
(1)由于Yt*不能直接观测,因而采用“部分调整假说”确定之,即假定因变量的实际变动(Yt–Yt-1),与其理想值和前期值之间的差异(Yt*
–Yt-1)成正比:
Yt
–Yt-1=δ(Yt*-Yt-1)(2)
0≤δ≤1,δ称为调整系数。
从(3)式可看出,Yt是现期理想值和前期实际值的加权平均。δ的值越高,调整过程越快。如果δ=1,则Yt=Yt*,在一期内实现全调整。若δ=0,则根本不作调整。
(2)式
Yt
–Yt-1=δ(Yt*-Yt-1)(2)可改写为:
Yt=δYt*+(1-δ)Yt-1
(3)(1)式Yt*=α+βXt+ut代入(3)式
Yt=δYt*+(1-δ)Yt-1
,得到
Yt=αδ+βδXt+(1-δ)Yt-1+δut
(4)用此模型可估计出α、β和δ的值。
与科克模型类似,这里也存在解释变量为随机解释变量的问题(Yt-1)。
区别是科克模型中,Yt-1与扰动项(ut-λut-1)相关,而部分调整模型中,Yt-1与扰动项ut同期无关。在这种情况下,用OLS法估计,得到的参数估计量是一个一致的估计量。
不难看出,(4)式
Yt=αδ+βδXt+(1-δ)Yt-1+δut
(4)与变换后的科克模型的形式相似,我们也不难通过对(4)式中Yt-1进行一系列的置换化为几何分布滞后的形式:(4)式两端取一期滞后,得(5)将此式代入(4)式,得到(为简单起见,省略扰动项):(6)我们可以用同样的方法置换Yt-2,以及随后的Yt-3,Yt-4,…,直至无穷,结果是将Yt表示为X的当前值和滞后值的一个滞后结构,系数为科克形式的几何递减权数,具体形式为:其中令λ=1-δ,β
=βδ,则得(7)与上节(2)式形式完全一样。
例林特纳(lintner)的股息调整模型
J.Lintner建立的股息调整模型是应用部分调整模型的一个著名实例。在对公司股息行为的研究中,Lintner发现,所有股份公司都将其税后利润的一部分以股息的形式分配给股东,其余部分则用作投资。
当利润增加时,股息一般也增加,但通常不会将增加的利润都用作股息分配,这是因为利润的增加可能是暂时的,如果股息增加太快,以后可能还会被迫掉下来,减少股息通常会损害公司的声誉,因而公司管理层通常对此非常谨慎。不将增加的利润都用于股息的另一个原因是可能有很好的投资机会。
为了建立一个描述这种行为的模型,Lintner假设各公司有一个长期的目标派息率γ,理想的股息Dt*与现期利润Πt有关,其关系为
Dt*=γΠt其中Ut为扰动项。因此而实际股息服从部分调整机制使用美国公司部门1918—1941年数据,得到如下回归结果:
各系数在1%显著水平下都显著异于0。从回归结果可知,(1-λ)的估计值为0.70,因而调整系数λ的估计值为0.30,即调整速度为0.30。由于Πt的系数是γλ的估计值,除以0.30,则得到长期派息率(γ)的估计值为0.50。即.二、适应预期模型
1.在模型中考虑预期的重要性
预期(expectation)的构模往往是应用经济学家最重要和最困难的任务,在宏观经济学中更是如此。投资,储蓄等都是对有关未来的预期很敏感的。
例如,如果存在很可观的失业,则政府支出增加被认为是有益的,并将刺激投资。另一方面,如果经济正接近充分就业,则政府的扩张政策被认为将导致通货膨胀,结果是工商界的信心受挫,投资下降。2.适应预期模型
由上所述,可知在模型中考虑预期的重要性。然而,在宏观经济领域,不存在令人满意的直接计量预期的方法。作为一种权宜之计,某些模型使用一种称为适应预期过程的间接方法。
适应预期过程是一种简单的误差学习过程(或称累进式期望),曾被卡甘(P.Cagan)和弗里德曼推广而得以普及。
上式表明,X的预期值是其当前实际值和先前预期值的加权平均。γ的值越大,预期值向X的实际发生值调整的速度越快。
其机制是,在每一时期中,将所涉及变量的当前观测值与以前所预期的值相比较,如果实际观测值大,则将预期值向上调整,如果实际观测值小,则预期值向下调整。调整的幅度是其预测误差的一个分数,即:(0≤γ≤1)(8)(8)式可写成(0≤γ≤1)(9)
适应预期和部分调整之间当然有很多明显的类似之处,可是从适应预期模型的最初形式导出仅包含可观测变量的模型(可操作模型)不象在部分调整模型的情况那么简单。假设你认为因变量Yt与某个解释变量X的预期值Xte有关,则可写出模型
若假定Xte
用适应预期机制确定,这就是一个适应预期模型,其中解释变量Xte是不可观测的,必须用可观测变量取代之。我们用“降阶”法来解决这个问题。如果(9)式成立,则对于t-1期,它也成立,即:将(11)式代入(9)式,得将(13)式代入(10)式,得我们可以用类似的方法,消掉(12)式中的,这一过程可无限重复下去,最后得到:
不难看出,此式与上节中科克分布(2)的形式相同。该模型的参数可用上一节介绍的非线性方法估计。对(14)式施加科克变换,将简化模型的数学形式,但由于与科克模型同样的理由,不宜直接用OLS法估计。施加科克变换的适应预期模型为:
3.例子:Friedman的持久收入假说
1957年,弗里德曼对传统消费函数提出批评,提出了自己的消费模型。在他的模型中,第i个消费者在第t期的消费与持久性收入(permanentincome)YitP有关,而不是与当期的收入Yit有关。持久性收入是一种长期收入概念,它表示在考虑了各种可能的波动的情况下,某人大体上可以依靠的收入。
持久收入是根据最近的经验和有关未来的预期而主观决定的,由于是主观的,因而无法直接计量。任何一年中的实际收入可能高于或低于持久收入,取决于该年中的特别因素。实际收入和持久收入之差称为暂时性收入(transitoryincome),记为YitT:
他以同样方式区分了持久性消费,实际消费和暂时性消费的概念。持久性消费是与持久性收入的水平相对应的消费水平。实际消费可能与持久消费有差异,原因是出现了某些特殊的未预料到的情况(如未预料到的医疗费用),或者是冲动性购买的结果。二者之差称为暂时性消费,记为CitT:
YitT和CitT被假定为具有0均值和常数方差的随机变量,它们相互独立,且与YitP和CitP无关。弗里德曼进一步假定持久消费与持久收入成正比:
上式中持久收入YitP不可观测,为解决这一问题,弗里德曼假设持久收入遵从适应预期过程,也就是说,如果某人的现期收入高于(或低于)其先前的持久收入概念,则他将增加(或减少)后者,增加(或减少)的幅度是二者之差乘以λ:λ一般位于0和1之间。因此人们在实际收入增加时将调整他们的持久收入概念,但不会做全额调整,这是因为认识到实际收入的变动或许有一部分是由于收入的暂时分量变动的结果。
此式表明,在第t年,消费者将持久收入估计为实际收入和以前的持久性收入概念的加权平均。如果λ接近于1,则该消费者将绝大部分权重给了实际收入,YP迅速向Y调整,若λ接近0,则很小部分权重给了实际收入,调整过程将很缓慢。(18)式可改写为:即将(17)式代入(16)式,我们有:
至此,我们得到了实际消费和持久收入之间的关系式,即消费函数的弗里德曼模型。式中CitT起着扰动项的作用。为了估计这个模型,弗里德曼用(20)式(适应预期机制)将持久收入表示成实际收入的现期值和各期滞后值:
若0<λ<1,这就是一个合理的假设,现期收入的权数最大,上一年次之,随着时间往回推,影响逐年衰减。最后,权数变得非常之小,使得无需考虑该年之前那些过去值。
弗里德曼采用的估计方法是我们前面介绍过的非线性方法,即首先试位于0和1区间内的大量λ值,为每个λ值计算相应的持久收入时间序列,然后用消费对每个持久收入数据集回归,根据R2选出最佳λ值。
为了与传统消费函数相比较,弗里德曼用美国1905—1951(战争期间除外)的人均实际消费和人均可支配收入数据进行了回归。在格点搜索计算中,他将持久收入计算为现期收入和16个滞后收入项的加权平均值,λ的最优值为0.37,得到消费函数中β的估计值为0.88。上两节中,我们讨论了下列三个模型:科克模型适应预期模型部分调整模型第四节自回归模型的估计
这种解释变量中包括因变量的滞后值的模型称为自回归模型。由于在解释变量中包含了因变量的滞后值,我们就可以动态地考察该变量在若干周期中的变动,因此称为动态模型。
在自回归模型(4)中,由于随机解释变量的存在和序列相关的可能性这双重原因,OLS法不能直接应用,因此我们必须研究这类模型的估计问题。这三个模型具有一种共同的形式,即:
一、自回归模型的估计问题
OLS法的应用,要求解释变量Xt为非随机的。在自回归模型中,由于Yt-1作为解释变量,这一条件已无法满足,这是因为,由于因此:这表明,Yt-1是随着随机扰动项Vt-1的变动而变动的,即Yt-1部分地由Vt-1决定,因而Yt-1是随机变量。
1.解释变量为随机变量时OLS估计量的统计性质
可以证明,当X为非随机变量这一条不满足时(1)若每一个Xt都独立于所有的扰动项ut,即
cov(Xs,ut)=0,s=1,2,…,nt=1,2,…n
则OLS估计量仍为无偏估计量。(2)若解释变量Xt独立于相应的扰动因素ut,即随机解释变量与扰动项同期无关:
Cov(Xt,ut)=0,t=1,2,…,n
则OLS估计量为一致估计量。(3)若上述两条均不满足,则OLS估计量既是有偏的,又是不一致的。2.自回归模型的估计问题
在自回归模型的情况下,第(1)条已无法满足,因为Yt-1显然可以表示为Vt-1,Vt-2,…,V1等的函数,因而依赖于Vt-1和所有早期的扰动因子。现在让我们来看是否有可能满足解释变量与扰动项同期无关的条件,从而得到一个一致的估计量。
在自回归模型(4)的情况下:也就是要求Yt-1独立于Vt,或
Cov(Yt-1,Vt)=0
不难看出,只要扰动项Vt是序列独立的(即自回归模型(4)的各期扰动项相互独立),我们就可以假定Yt-1独立于所有未来的扰动因子(包括Vt),在这种假定下,Yt-1与Vt无关,我们对(4)式应用OLS得到的参数估计量是一致估计量。
让我们回到本节开始时列出的三个模型,看看我们关于Yt-1独立于所有未来的扰动因子,特别是Yt-1与Vt无关的假定是否能成立。在科克模型和适应预期模型中,扰动因子序列独立的条件不成立,以科克模型为例,扰动项
Vt=ut-λut-1假定ut满足标准假设条件,则容易证明即Yt-1与Vt相关。适应预期模型的情况与此类似。该式非0,即Vt序列相关,我们还不难证明
因此,对于科克模型和适应预期模型,应用OLS法不仅得不到无偏估计量,而且也得不到一致估计量。也就是说,即使样本容量无限增大,参数估计量也不趋向于其总体值。因此,不宜采用OLS法估计上述两种模型。
但是,部分调整模型不同,在该模型中,Vt=δut,若ut满足标准假设条件,则Vt也满足。因此,可用OLS法直接估计部分调整模型,将产生一致估计值,虽然估计值通常是有偏的(在小样本情况下)。
综上所述,OLS法可用于部分调整模型的估计,并提供一致的估计值。而科克模型和适应预期模型,则由于其扰动项存在序列相关,用OLS进行估计得到的估计量既是有偏的,也是不一致的。二、工具变量法(IV法,InstrumentalVariable)OLS法不能应用于科克模型和适应预期模型的原因是解释变量Yt-1与扰动项Vt相关,如果这种相关能够被消除的话,我们就可以用OLS得到一致估计值。如何实现这一点呢?利维顿(Liviatan)提出的工具变量法是一种解决方法。
工具变量法的基本思路是当扰动项u与解释变量X高度相关时,设法找到另一个变量Z,Z与X高度相关,而与扰动项u不相关,在模型中,用Z替换X,然后用OLS法估计,变量Z称为工具变量。
只要工具变量的选取能够保证Z与X高度相关,而与u不相关,则我们得到的将是一致估计量。Z与X的相关程度越高,这种替代的效果就越好。我们下面回到科克模型和适应预期模型,研究工具变量的选取。我们的模型为
这里X是唯一的外生变量,而Y的行为部分地依赖于X的行为,Yt-1的取值部分地取决于Xt-1的数值。因此,这里Xt-1就是一个比较理想的工具变量,即用滞后外生变量作为滞后内生变量的工具:
Zt=Xt-1,t=1,2,…,n来估计
应该指出,找到一个好的工具变量绝非易事,并且还可能带来新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年现代心理学理论与实践应用题目
- 2026年产品设计思维与技能中级模拟试题
- 2026年建筑安全与风险控制一级建造师工程保险专攻题集
- 2026年操作系统原理题库及答案解析
- AI合作模式创新
- 中医特色疗法配合护理在老年病中的应用
- 呼吸系统疾病护理学课件与作业
- 外贸运行基本知识
- 2026年黑龙江冰雪体育职业学院单招职业技能考试模拟试题含详细答案解析
- 2026年黑龙江生物科技职业学院单招综合素质考试模拟试题含详细答案解析
- 运输管理实务(第二版)李佑珍课件第6章 集装箱多式联运学习资料
- 水泵维修更换申请报告
- 剧院音效优化穿孔吸音板施工方案
- 机械设备运输合同
- 《分布式光伏并网启动方案》
- 酒店委托管理合同范本
- 5.第五章-透镜曲率与厚度
- 抖音账号运营服务抖音账号运营方案
- 宣传片基本报价单三篇
- (正式版)SHT 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范
- 消防应急通信培训课件
评论
0/150
提交评论