版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省中山纪念中学高二数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.2.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.3.函数的最小值是()A.2 B.4C.5 D.64.函数的递增区间是()A. B.和C. D.和5.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或6.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零7.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)8.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.29.已知椭圆的一个焦点坐标为,则的值为()A. B.C. D.10.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.11.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°12.下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则实数=________.14.曲线在处的切线与坐标轴围成的三角形面积为___________.15.曲线在点处的切线方程为_______.16.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某省食品药品监管局对15个大学食堂“进货渠道合格性”和“食品安全”进行量化评估,满分为10分,大部分大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:分数段食堂个数1383(1)现从15个大学食堂中随机抽取3个,求至多有1个大学食堂的评分不低于9分的概率;(2)以这15个大学食堂的评分数据评估全国的大学食堂的评分情况,若从全国的大学食堂中任选3个,记X表示抽到评分不低于9分的食堂个数,求X的分布列及数学期望.18.(12分)在中,角A、B、C的对边分别为a、b、c,已知,且.(1)求的面积;(2)若a、b、c成等差数列,求b的值.19.(12分)已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:20.(12分)(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围(2)设命题p:;命题q:,若是的充分不必要条件,求实数a的取值范围21.(12分)某地从今年8月份开始启动12-14岁人群新冠肺炎疫苗的接种工作,共有8千人需要接种疫苗.前4周的累计接种人数统计如下表:前x周1234累计接种人数y(千人)2.5344.5(1)求y关于的线性回归方程;(2)根据(1)中所求的回归方程,预计该地第几周才能完成疫苗接种工作?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,22.(10分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:2、A【解析】由直线斜率与方向向量的关系算出斜率,然后可得.【详解】记直线的倾斜角为,由题知,又,所以,即.故选:A3、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C4、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.5、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用6、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B7、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D8、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B9、B【解析】根据题意得到得到答案.【详解】椭圆焦点在轴上,且,故.故选:B.10、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C11、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.12、C【解析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④.【详解】①:向量与空间任意向量都不能构成一个基底,则与共线或与其中有一个为零向量,所以,故①正确;②:由向量是空间一组基底,则空间中任意一个向量,存在唯一的实数组使得,所以也是空间一组基底,故②正确;③:由为空间一组基底,若,则,所以,故③正确;④:对于任意非零空间向量,,若,则存在一个实数使得,有,又中可以有为0的,分式没有意义,故④错误.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可求得【详解】因为,所以,故答案为:【点睛】本题考查向量垂直的坐标表示,属于基础题14、【解析】先求导数,得出切线斜率,写出切线方程,然后可求三角形的面积.【详解】,当时,,所以切线方程为,即;令可得,令可得;所以切线与坐标轴围成的三角形面积为.故答案为:.15、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.16、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)分布列见解析,【解析】(1)利用古典概型的概率公式可求概率.(2)由题设可得,故利用二项分布可求的分布列,利用公式可求其期望.【小问1详解】设至多有1个大学食堂的评分不低于9分为事件,则.所以至多有1个大学食堂的评分不低于9分的概率为.【小问2详解】任意一个大学食堂,其评分不低于9分的概率为,故,所以,,,,的分布列为:0123.18、(1);(2).【解析】(1)先利用数量积和余弦值得到,再利用面积公式计算即得结果;(2)根据等差数列得到,再结合余弦定理进行运算得到关于b的关系,求值即可.【详解】(1)由得,所以,所以,所以,所以;(2)因为a、b、c成等差数列,所以,由余弦定理得,即,解得.19、(1)证明见解析,(2)证明见解析【解析】(1)令可求得的值,令,由可得,两式作差可得,利用等比数列的定义可证得结论成立,确定该数列的首项和公比,可求得数列的通项公式;(2)求得,利用错位相减法可求得,结合数列的单调性可证得结论成立.【小问1详解】证明:当时,,解得,当时,由可得,上述两个等式作差得,所以,,则,因为,则,可得,,,以此类推,可知对任意的,,所以,,因此,数列是等比数列,且首项为,公比为,所以,,解得.【小问2详解】证明:,则,其中,所以,数列为单调递减数列,则,,,上式下式,得,所以,,因此,.20、(1)(2)【解析】根据复合命题的真值表知:p真q假;非q是非p的充分不必要条件,等价于p是q的充分不必要条件,等价于p是q的真子集【详解】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是命题p:,即命题q:,即由于是的充分不必要条件,则p是q的充分不必要条件即有,【点睛】本题考查了复合命题及其真假属基础题21、(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《时尚北京》杂志26年2月份
- 中学安全管理与防护制度
- 企业员工培训与能力建设制度
- 交通设施维护保养规范制度
- 2026年市场营销策略案例分析练习题
- 2026年物流与供应链管理优化题库
- 2026年国际汉语教师资格考试文化知识与教学技能题库
- 2026年CPA注册会计师综合试题库及解析
- 2026年振荡培养协议
- 古典概型课件
- 客运驾驶员培训教学大纲
- 园区托管运营协议书
- 2025年江苏省苏州市中考数学模拟试卷(含答案)
- GB/T 45133-2025气体分析混合气体组成的测定基于单点和两点校准的比较法
- 九年级下册语文必背古诗文(字帖描红)
- 北京市行业用水定额汇编(2024年版)
- 婚内财产协议书标准版
- 基于大数据的金融风险评估模型构建
- 供应链与生产制造L1-L4级高阶流程规划框架 相关两份资料
- 国际贸易合同履行中的运输保险索赔程序与操作指南
- 龙泽滴灌带生产项目可行性研究报告
评论
0/150
提交评论