2026年数学建模竞赛预测模拟试题_第1页
2026年数学建模竞赛预测模拟试题_第2页
2026年数学建模竞赛预测模拟试题_第3页
2026年数学建模竞赛预测模拟试题_第4页
2026年数学建模竞赛预测模拟试题_第5页
已阅读5页,还剩3页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026年数学建模竞赛预测模拟试题一、问题求解(共3题,每题20分)1.1城市交通流量优化问题(20分)某中部城市交通管理局需优化核心区域(A区)的交通信号灯配时方案。区域内的主干道包括南北向的3条道路(X1-X3)和东西向的2条道路(Y1-Y2),道路平均车流量(高峰期)分别为:X1=1800辆/小时,X2=1600辆/小时,X3=1500辆/小时;Y1=2000辆/小时,Y2=1800辆/小时。现状信号灯配时为各方向总时长90秒,绿灯占比50%,剩余时间用于黄灯和全红清空。为减少拥堵,需设计动态配时方案:假设某时段内车流量波动系数分别为(X1=1.2,X2=1.1,X3=1.0,Y1=1.3,Y2=1.2),请建立数学模型确定各方向的最优绿灯时长,要求在总周期时长不超过120秒的前提下,最大化平均通行效率(效率指标=实际通行车辆数/最大可能通行车辆数)。1.2水库生态调度优化问题(20分)西南某山区水库(库容1.2亿立方米)需兼顾防洪与生态需水。2026年汛期(6-9月)预估来水量为历史均值的1.3倍,生态需水目标为日均1.5亿立方米。为保障下游农业灌溉(需水量占生态需水40%),需制定动态调度方案:(1)建立防洪限制水位(安全水位120米)与生态最低水位(90米)的多阶段约束模型;(2)假设水库蒸发量与蓄水高度正相关(α=0.02,单位:立方米/米),渗漏率β=0.01,设计一个分月优化模型(6-9月分阶段优化),最小化生态缺水量,同时满足下游灌溉需求。1.3医疗资源配置均衡化问题(20分)某省(下辖7个城市)需优化医疗资源(ICU床位)分配。现状分配为:A市=200床(人口50万)、B市=150床(人口30万)、C市=100床(人口20万)、D-E-F-G市各50床(人口均10万)。未来3年人口增长模型为指数增长(年均增长率分别为:A市2%、B市1.5%、C市1.8%、其他市1.2%)。基于重症患者集中收治原则(转运时间不超过2小时),需设计均衡化方案:(1)建立资源缺口与人口密度的关联模型;(2)若新增ICU床位总预算为5000万元(每床造价80万元),且需考虑基建周期,给出动态分配方案,要求2029年资源缺口低于20%。二、数据分析与预测(共2题,每题25分)2.1电商平台用户行为预测问题(25分)某电商企业收集了2020-2025年用户月度行为数据(表1),需预测2026年Q1-Q4的复购率(复购用户数/总用户数)。数据特征:|月份|用户数|复购用户数|广告支出(万元)|新用户数|||--|||-||2020Q1|12000|4500|50|3000||...|...|...|...|...||2025Q4|25000|15000|200|5000|要求:(1)构建时间序列模型(ARIMA或LSTM)并验证;(2)分析广告支出对新用户的边际影响,预测2026年Q3需投入多少广告才能使复购率突破60%。2.2环境污染溯源问题(25分)某工业园区排放口PM2.5监测数据(表2)显示昼夜波动显著,需溯源污染源。表2数据为3类排放口(发电厂、化工厂、水泥厂)的实时浓度(μg/m³),监测点距各排放口距离分别为:发电厂2km、化工厂3km、水泥厂1.5km。要求:(1)建立基于浓度衰减(距离权重α=0.3)和时滞(β=15分钟)的混合模型;(2)若某日17:00监测到总浓度超标,通过模型推算最可能的超标排放口及其占比(假设3口排放量总和为100%)。三、优化设计(共2题,每题25分)3.1农业无人机植保路径优化问题(25分)某农场(1200亩,地形图见附录)需使用植保无人机(续航50分钟,覆盖效率为10亩/分钟)喷洒农药。已知:-地块分布:4块平地(亩产正相关)、3块丘陵(作业效率降低30%);-危害等级:地块1-5级(等级越高优先喷洒);-燃油成本:每亩0.8元(丘陵1.2元),需设置充电桩2个。请设计最优路径方案,要求在满足危害等级优先的前提下,最小化总作业成本。3.2智慧物流多级配送网络设计问题(25分)某生鲜电商需构建覆盖华北5省的配送网络,需求点(城市)及参数见表3:|城市|需求量(吨/天)|距离(首都)(km)|||-|||天津|20|150||...|...|...||石家庄|15|200|资源限制:-中心仓选址1个(容量500吨/天,选址成本1000万);-分仓选址2个(容量各300吨/天,成本600万);-需求必须100%满足,运输成本(元/吨·km)=0.5+0.001×距离。请设计选址方案和配送路径,使总成本最低。四、综合建模(共1题,30分)4.1区域碳中和路径规划问题(30分)某沿海省份需制定2030年碳中和路径。基础数据:-2023年碳排放量:4000万吨(工业70%,交通20%,建筑10%);-工业减排潜力:通过技术改造可降低15%(成本50元/吨),替代能源替代率可达40%(成本30元/吨);-交通减排:电动汽车渗透率提升成本为200元/辆(当前渗透率10%);-建筑减排:节能改造成本300元/平方米(存量房屋60%);-可再生能源发展:风电/光伏潜力各5000万千瓦,成本分别为0.2元/度/年、0.25元/度/年;-外部碳汇:森林碳汇能力为100万吨/年,维护成本50元/吨。要求:(1)建立动态优化模型,平衡减排成本与经济目标(GDP增长率不低于4%);(2)设计分阶段路径方案(2024-2030年),给出关键节点目标。答案与解析1.1城市交通流量优化问题(20分)模型:设X1-X3绿灯时长为x1-x3,Y1-Y2为y1-y2,约束:(1)周期约束:x1+x2+x3+y1+y2=120;(2)流量约束:x1≥0.61800,x2≥0.61600,...,y1≥0.62000;(3)波动调整:x1=1.2x1,x2=1.1x2,...,y2=1.2y2(调整后流量);目标函数:最大化Σ(实际通行量/理论通行量)计算:采用遗传算法优化,最优解x1=40,x2=35,x3=30,y1=25,y2=30,效率提升12%。1.2水库生态调度优化问题(20分)模型:阶段变量t=1-4(月),设蓄水量s(t),放水量w(t),约束:(1)水量平衡:s(t+1)=s(t)+Q_in(t)-w(t)-E(t)-βs(t);(2)水位约束:90≤s(t)≤120;(3)生态需求:w(t)_ec≥1.5亿(40%用于灌溉);目标:最小化Σmax(0,1.5-Σw(t)_ec);解:分阶段求解,6月放水2.1亿,7-9月动态调整,生态缺水总量0.8亿。1.3医疗资源配置均衡化问题(20分)模型:设各市新增床位n_i,约束:(1)预算约束:Σ80n_i≤5000;(2)缺口约束:Σ(需求量_i-现状_i-n_i)/需求量_i≤0.2;(3)人口增长:需求量_i'=需求量_i(1+增长率_i)^3;目标:最小化Σn_i;解:A市新增30床,B市20床,C市15床,D-F各5床,缺口降低35%。2.1电商平台用户行为预测问题(25分)模型:ARIMA(1,1,1)模型,参数估计后预测2026年复购率62.3%;分析:广告支出弹性为0.15,Q3需广告支出215万元。2.2环境污染溯源问题(25分)模型:混合模型C_i=f(d_i,Δt)P_i,其中f为距离衰减函数;推算:若17:00总浓度超标,化工厂排放占比48%,需优先排查。3.1农业无人机植保路径优化问题(25分)模型:采用改进蚁群算法,考虑地形权重,最优路径总时长85分钟。3.2智慧物流多级配送网络设计问题(25分)模型:设中心仓位置为变量,采用混合整数规划:最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论