广东省广州铁一中学2026届高二上数学期末检测试题含解析_第1页
广东省广州铁一中学2026届高二上数学期末检测试题含解析_第2页
广东省广州铁一中学2026届高二上数学期末检测试题含解析_第3页
广东省广州铁一中学2026届高二上数学期末检测试题含解析_第4页
广东省广州铁一中学2026届高二上数学期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州铁一中学2026届高二上数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.2.如图,四面体-,是底面△的重心,,则()A B.C. D.3.如图,在四面体中,,分别是,的中点,则()A. B.C. D.4.中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为,在逆水中的速度为,则游船此次行程的平均速度V与的大小关系是()A. B.C. D.5.在中,若,则()A.150° B.120°C.60° D.30°6.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.7.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A. B.C. D.8.曲线的离心率为()A. B.C. D.9.已知实数,满足则的最大值为()A.-1 B.0C.1 D.210.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元11.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.12.设的内角A,B,C的对边分别为a,b,c,已知,,,则b等于()A. B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.设函数的导函数为,已知函数,则______.14.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.15.写出一个渐近线的倾斜角为且焦点在y轴上的双曲线标准方程___________.16.若,则与向量同方向的单位向量的坐标为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)若不等式的解集为,求实数的取值范围.18.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围19.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.20.(12分)已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最值.21.(12分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.22.(10分)三棱锥中,,,,直线与平面所成的角为,点在线段上.(1)求证:;(2)若点在上,满足,点满足,求实数使得二面角的余弦值为.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【点睛】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.2、B【解析】根据空间向量的加减运算推出,进而得出结果.【详解】因为,所以,故选:B3、A【解析】利用向量的加法法则直接求解.【详解】在四面体中,,分别是,的中点,故选:A4、A【解析】求出平均速度V,进而结合基本不等式求得答案.【详解】易知,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为,逆流而上的时间为,则平均速度,由基本不等式可得,而,当且仅当时,两个不等式都取得“=”,而根据题意,于是.故选:A.5、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.6、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】7、C【解析】设,用表示出,求得的表达式,结合二次函数的性质求得当时,取得最小值,从而求得点的坐标.【详解】设,则=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以当λ=时,取得最小值,此时==,即点Q的坐标为.故选:C8、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.9、D【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数,即可得到结果【详解】由约束条件画出可行域如图,化目标函数为,由图可知当直线过点时,直线在轴上的截距最小,取得最大值2.故选:D10、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D11、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A12、A【解析】由正弦定理求解即可.【详解】因为,所以故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求出函数的导函数,再令代入计算可得;【详解】解:因为,所以,所以,解得;故答案为:14、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.15、(答案不唯一)【解析】根据已知条件写出一个符合条件的方程即可.【详解】如,焦点在y轴上,令,得渐近线方程为,其中的倾斜角为.故答案为:(答案不唯一).16、【解析】由空间向量的模的计算求得向量的模,再由单位向量的定义求得答案.【详解】解:因为,所以,所以与向量同方向的单位向量的坐标为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)将不等式分解因式,即可求得不等式解集;(2)根据不等式解集,考虑其对应二次函数的特征,即可求出参数的范围.【小问1详解】当时,即,也即,则,解得或,故不等式解集为.【小问2详解】不等式的解集为,即的解集为,也即的解集为,故其对应二次函数的,解得.故实数的取值范围为:.18、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.19、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.20、(1)(2)最小值为0,最大值为4【解析】(1)利用导数求得切线方程.(2)结合导数求得在区间上的最值.【小问1详解】,所以曲线在点处的切线方程为.【小问2详解】,所以在区间递增;在区间递减,,所以在区间上的最小值为,最大值为.21、(1)证明见解析;(2).【解析】(1)根据给定条件建立空间直角坐标系,利用空间位置关系的向量证明计算作答.(2)利用(1)中坐标系,证明平面,再求点B到平面的距离即可作答.【小问1详解】在正四棱柱中,以点D为原点,射线分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,因E为棱上的动点,则设,,而,,即,所以.【小问2详解】由(1)知,点,,,,设平面的一个法向量,则,令,得,显然有,则,而平面,因此,平面,于是有直线BE到平面的距离等于点B到平面的距离,所以直线BE到平面的距离是.22、(1)证明见解析;(2).【解析】(1)证明平面,利用线面垂直的性质可证得结论成立;(2)设,以点为坐标原点,、、所在直线分别为、、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论