版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰州市2026届数学高一上期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,,则是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数2.如果不等式成立的充分不必要条件是,则实数a的取值范围是()A. B.C.或 D.或3.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.4.设分别是x轴和圆:(x-2)2+(y-3)2=1上的动点,且点A(0,3),则的最小值为()A. B.C. D.5.若,求()A. B.C. D.6.过点且与原点距离最大的直线方程是()A. B.C. D.7.已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3} B.{0,1,4}C.{0,1,3} D.{1,3,4}8.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.9.已知正实数满足,则的最小值是()A B.C. D.10.已知函数,且,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________12.不等式的解集为_____________.13.已知是幂函数,且在区间是减函数,则m=_____________.14.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____15.已知函数在上单调递增,则实数a的取值范围为____.16.函数的单调减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边经过点,求的值;已知,求的值18.已知的三个顶点分别为,,.(1)求AB边上的高所在直线的方程;(2)求面积.19.已知函数.(1)若函数在是增函数,求的取值范围;(2)若对于任意的,恒成立,求的取值范围.20.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号的电动汽车在一段国道上进行测试,汽车行驶速度低于80km/h.经多次测试得到该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的数据如下表所示:为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,且,,()(1)当时,请选出你认为最符合表格中所列数据的函数模型,并说明理由;(2)求出(1)中所选函数模型的函数解析式;(3)根据(2)中所得函数解析式,求解如下问题:现有一辆同型号电动汽车从地驶到地,前一段是200km的国道,后一段是60km的高速路(汽车行驶速度不低于80km/h),若高速路上该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的关系满足,则如何行使才能使得总耗电量最少,最少为多少?21.已知角的顶点为坐标原点,始边为轴的非负半轴,终边经过点,且.(1)求实数的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】通过诱导公式,结合正弦函数的性质即可得结果.【详解】,所以,,所以则是最小正周期为的奇函数,故选:D.2、B【解析】解不等式,得其解集,进而结合充分、必要条件与集合间的包含关系的对应关系,可得不等式组,则有,(注:等号不同时成立),解可得答案【详解】解不等式,得其解集,,由于不等式成立的充分不必要条件是则有,(注:等号不同时成立);解得故选B.【点睛】本题考查充分、必要条件的判断及运用,注意与集合间关系的对应即可,属于简单题3、D【解析】因为有直观图可知,该几何体的正视图是有一条从左上角到右下角的对角线的正方形,俯视图是有一条从左下角角到右上角角的对角线的正方形,侧视图是有一条从左上角到右下角的对角线的正方形(对角线为虚线),所以只有选项D合题意,故选D.4、B【解析】取点A关于x轴的对称点C(0,-3),得到,最小值为.故答案为B.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值5、A【解析】根据,求得,再利用指数幂及对数的运算即可得出答案.【详解】解:因为,所以,所以.故选:A.6、A【解析】首先根据题意得到过点且与垂直的直线为所求直线,再求直线方程即可.【详解】由题知:过点且与原点距离最大的直线为过点且与垂直的直线.因为,故所求直线为,即.故选:A【点睛】本题主要考查直线方程的求解,数形结合为解题的关键,属于简单题.7、C【解析】根据并集的定义可得集合A中一定包含的元素,再对选项进行排除,可得答案.【详解】∵集合A∪B={0,1,2,3,4},B={1,2,4};∴集合A中一定有元素0和3,故可排除A,B,D;故选:C.8、B【解析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【点睛】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.9、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10、A【解析】,,,,.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】几何体为一个圆锥与一个棱柱的组合体,体积为12、【解析】将不等式转化为,利用指数函数的单调性求解.【详解】不等式为,即,解得,所以不等式的解集为,故答案为:13、【解析】根据幂函数系数为1,得或,代入检验函数单调性即可得解.【详解】由是幂函数,可得,解得或,当时,在区间是减函数,满足题意;当时,在区间是增函数,不满足题意;故.故答案为:.14、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.15、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:16、【解析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】由题意利用任意角的三角函数的定义,诱导公式,求得要求式子的值利用查同角三角函数的基本关系,求得要求式子的值【详解】(1)由题意,因为角的终边经过点,,,(2)由题意,知,所以【点睛】本题主要考查了任意角三角函数的定义与诱导公式,及同角三角函数的基本关系的化简求解,其中解答中熟记三角函数的定义和三角函数的基本关系式,合理应用诱导公式是解答的关键,属于基础题,着重考查了运算与求解能力.18、(1);(2).【解析】(1)根据高线的性质,结合互相垂直直线的斜率关系,结合直线点斜式方程进行求解即可;(2)根据点到直线距离公式、两点间距离公式、三角形面积公式进行求解即可.【小问1详解】∵,,∴AB的斜率,∴AB边高线斜率,又,∴AB边上的高线方程为,化简得.【小问2详解】直线AB的方程为,即,顶点C到直线AB的距离为,又,∴的面积.19、(1)(2)【解析】(1)由函数可知对称轴为,由单调性可知,即可求解;(2)整理问题为在时恒成立,设,则可转化问题为在时恒成立,讨论对称轴与的位置关系,进而求解.【小问1详解】因为函数,所以对称轴为,因为在是增函数,所以,解得【小问2详解】因为对于任意的,恒成立,即在时恒成立,所以在时恒成立,设,则对称轴为,即在时恒成立,当,即时,,解得;当,即时,,解得(舍去),故.20、(1),理由见解析(2)(3)当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为【解析】(1)由表格数据判断合适的函数关系,(2)代入数据列方程组求解,(3)分别表示在国道与高速路上的耗电量,由单调性求其取最小值时的速度.【小问1详解】若选,则当时,该函数无意义,不合题意若选,显然该函数是减函数,这与矛看,不合题意故选择【小问2详解】选择,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医学考研生理学试题及答案
- 2026年经济师考试宏观经济分析金融实务习题精讲
- 2026年工业自动化项目中的质量管理题库解析
- 2026年兰州职业技术学院单招职业技能考试参考题库含详细答案解析
- 2026年南昌大学第二附属医院高层次人才招聘参考考试题库及答案解析
- 2026年毕节医学高等专科学校单招综合素质考试备考题库含详细答案解析
- 首都医科大学附属北京朝阳医院石景山医院派遣合同制职工招聘7人考试参考题库及答案解析
- 2026年广东松山职业技术学院单招综合素质笔试模拟试题含详细答案解析
- 2026年广西金融职业技术学院单招职业技能考试备考题库含详细答案解析
- 2026年河南对外经济贸易职业学院高职单招职业适应性测试备考试题及答案详细解析
- 2025下半年四川绵阳市涪城区事业单位选调10人备考题库及答案解析(夺冠系列)
- 2025年山东省专升本数学(数一)真题及答案
- 2025年市场营销知识题库及答案(含AB卷)
- 2026年齐齐哈尔高等师范专科学校单招(计算机)测试备考题库必考题
- 高一生物上册期末考试题库含解析及答案
- 承揽加工雕塑合同范本
- 中国大麻行业研究及十五五规划分析报告
- 消毒产品生产企业质量保证体系文件
- 寒假前安全法律教育课件
- 咨询行业服务售后服务方案(3篇)
- 毛巾染色知识培训课件
评论
0/150
提交评论