版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省滕州市善国中学高一数学第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象大致()A. B.C. D.2.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为A.π B.πC.4π D.π3.若方程表示圆,则实数的取值范围是A. B.C. D.4.箱子中放有一双红色和一双黑色的袜子,现从箱子中同时取出两只袜子,则取出的两只袜子正好可以配成一双的概率为()A. B.C. D.5.()A. B.1C.0 D.﹣16.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或7.在平面直角坐标系中,角以为始边,终边与单位圆交于点,则()A. B.C. D.8.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或9.如图一铜钱的直径为毫米,穿径(即铜钱内的正方形小孔边长)为毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为A. B.C. D.10.已知函数,则使得成立的的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___12.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______13.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________14.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.15.设是第三象限的角,则的终边在第_________象限.16.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数.(1)求实数的值,并用定义证明是上的增函数;(2)若关于的不等式的解集非空,求实数的取值范围.18.如图,在圆柱中,,分别是上、下底面圆的直径,且,,分别是圆柱轴截面上的母线.(1)若,圆柱的母线长等于底面圆的直径,求圆柱的表面积.(2)证明:平面平面.19.已知定义域为的函数是奇函数(1)求,的值;(2)用定义证明在上为减函数;(3)若对于任意,不等式恒成立,求的范围20.已知全集,,.(1)当时,,;(2)若,求实数a的取值范围,21.如图,直角梯形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,点E为线段BC的中点,点F在线段AD上,且EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC,点P为几何体中线段AD的中点(Ⅰ)证明:平面ACD⊥平面ACF;(Ⅱ)证明:CD∥平面BPE
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据对数函数的图象直接得出.【详解】因为,根据对数函数的图象可得A正确.故选:A.2、B【解析】球半径,所以球的体积为,选B.3、A【解析】由二元二次方程表示圆的充要条件可知:,解得,故选A考点:圆的一般方程4、B【解析】先求出试验的样本空间,再求有利事件个数,最后用概率公式计算即可.【详解】两只红色袜子分别设为,,两只黑色袜子分别设为,,这个试验的样本空间可记为,共包含6个样本点,记为“取出的两只袜子正好可以配成一双”,则,包含的样本点个数为2,所以.故选:B5、C【解析】直接利用诱导公式以及特殊角的三角函数求解即可.【详解】.故选:C.6、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.7、A【解析】根据任意角三角函数的概念可得出,然后利用诱导公式求解.【详解】因为角以为始边,且终边与单位圆交于点,所以,则.故选:A.【点睛】当以为始边,已知角终边上一点的坐标为时,则,.8、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.9、B【解析】由题意结合几何概型公式可得:该粒米未落在铜钱的正方形小孔内的概率为:.本题选择B选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,通用公式:P(A)=.10、C【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.二、填空题:本大题共6小题,每小题5分,共30分。11、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题12、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”13、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则14、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:15、二或四【解析】根据是第三象限角,得到,,再得到,,然后讨论的奇偶可得答案.【详解】因为是第三象限角,所以,,所以,,当为偶数时,为第二象限角,当为奇数时,为第四象限角.故答案为:二或四.16、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),证明见解析;(2).【解析】(1)由函数奇偶性的性质,求得,再利用函数的单调性的定义与判定方法,即可是上的增函数;(2)由函数为奇函数,且在上单调递增,把不等式转化为在上有解,结合二次函数的性质,即可求解.【详解】(1)因为定义在上的奇函数,可得,都有,令,可得,解得,所以,此时满足,所以函数是奇函数,所以.任取,且,则,因为,即,所以是上的增函数.(2)因为为奇函数,且的解集非空,可得的解集非空,又因为在上单调递增,所以的解集非空,即在上有解,则满足,解得,所以实数的取值范围..18、(1).(2)证明见详解【解析】(1)借助圆柱的母线垂直于底面构造直角三角形计算可得半径,然后可得表面积;(2)构造平行四边形证明,结合已知可证.【小问1详解】连接CF、DF,因为CD为直径,记底面半径为R,EF=2R则又解得R=2圆柱的表面积.【小问2详解】连接、、、由圆柱性质知且且四边形为平行四边形又平面CDE,平面CDE平面CDE同理,平面CDE又,平面ABH,平面ABH平面平面.19、(1),;(2)证明见解析;(3).【解析】(1)根据奇函数定义,利用且,列出关于、的方程组并解之得;(2)根据函数单调性的定义,任取实数、,通过作差因式分解可证出:当时,,即得函数在上为减函数;(3)根据函数的单调性和奇偶性,将不等式转化为:对任意的都成立,结合二次函数的图象与性质,可得的取值范围【详解】解:(1)为上的奇函数,,可得又(1),解之得经检验当且时,,满足是奇函数.(2)由(1)得,任取实数、,且则,可得,且,即,函数在上为减函数;(3)根据(1)(2)知,函数是奇函数且在上为减函数不等式恒成立,即也就是:对任意的都成立变量分离,得对任意的都成立,,当时有最小值为,即的范围是【点睛】本题以含有指数式的分式函数为例,研究了函数的单调性和奇偶性,并且用之解关于的不等式,考查了基本初等函数的简单性质及其应用,属于中档题20、(1),或;(2)【解析】(1)解不等式,求出,进而求出与;(2)利用交集结果得到集合包含关系,进而求出实数a的取值范围.【小问1详解】,解得:,所以,当时,,所以,或;【小问2详解】因为,所以,要满足,所以实数a的取值范围是21、证明过程详见解析【解析】(Ⅰ)证明AF⊥平面EFDC,得出AF⊥CD;再由勾股定理证明FC⊥CD,即可证明CD⊥平面ACF,平面ACD⊥平面ACF;(Ⅱ)取DF的中点Q,连接QE、QP,证明BPQE四点共面,再证明CD∥EQ,从而证明CD∥平面EBPQ,即为CD∥平面BPE【详解】(Ⅰ)由题意知,四边形ABEF是正方形,∴AF⊥EF,又平面ABEF⊥平面EFDC,∴AF⊥平面EFDC,∴AF⊥CD;又FD=4,FC=AB=2,CD=AB=2,∴F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年大学英语六级听力理解备考练习题
- 2026年厨师职业菜品创新与烹饪技巧考核题
- 2025 小学二年级道德与法治上册公共场合不喧哗课件
- 2026年应届生软件开发基础笔试题
- 2026年金融投资股市分析高级笔试模拟题
- 2026年外贸业务英语听力突破训练试题
- 地下安全试卷汇编讲解
- 2026上半年安徽事业单位联考招聘898人参考考试题库及答案解析
- 2026年明达职业技术学院单招综合素质笔试备考题库含详细答案解析
- 2026年南通科技职业学院单招综合素质笔试备考题库含详细答案解析
- 2026德江县县属国有企业招聘13人参考考试题库附答案解析
- 寻脉山河:中国主要河流与湖泊的空间认知与生态理解-八年级地理教学设计
- 达人精准运营方案
- 四川省凉山州2025-2026学年上学期期末考试七年级数学试题(含答案)
- 语文试题-汕头市2025-2026学年度普通高中毕业班教学质量监测(含解析)
- 2026年浙江高考英语考试真题及答案
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
- 质量信得过班组汇报材料
- 医学伦理学案例分析
- 金融科技对商业银行业务的影响研究
- 寒假辅导班招生方案
评论
0/150
提交评论