2026届互助县第一中学高一下数学期末质量检测模拟试题含解析_第1页
2026届互助县第一中学高一下数学期末质量检测模拟试题含解析_第2页
2026届互助县第一中学高一下数学期末质量检测模拟试题含解析_第3页
2026届互助县第一中学高一下数学期末质量检测模拟试题含解析_第4页
2026届互助县第一中学高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届互助县第一中学高一下数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆截直线所得弦的长度为4,则实数a的值是A. B. C. D.2.若实数,满足约束条件,则的最大值为()A.-3 B.1 C.9 D.103.若,则下列不等式成立的是()A. B.C. D.4.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.400,40 B.200,10 C.400,80 D.200,205.已知向量,且,则的值为()A.1 B.3 C.1或3 D.46.已知中,,,点是的中点,是边上一点,则的最小值是()A. B. C. D.7.已知实数满足,则的最大值为()A.8 B.2 C.4 D.68.命题“”的否定是()A., B.,C., D.,9.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.6010.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值二、填空题:本大题共6小题,每小题5分,共30分。11.若为幂函数,则满足的的值为________.12.若,则________.13.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.14.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。15.在棱长均为2的三棱锥中,分别为上的中点,为棱上的动点,则周长的最小值为________.16.已知数列满足则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.18.若,其为锐角,求的值19.某企业生产的某种产品,生产总成本(元)与产量(吨)()函数关系为,且函数是上的连续函数(1)求的值;(2)当产量为多少吨时,平均生产成本最低?20.已知各项均为正数的等比数列满足:,且,.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前n项和.21.设全集为实数集,,,.(1)若,求实数的取值范围;(2)若,且,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:圆化为标准方程为,所以圆心为(-1,1),半径,弦心距为.因为圆截直线所得弦长为4,所以.故选B.2、C【解析】

画出可行域,向上平移基准直线到可行域边界的位置,由此求得目标函数的最大值.【详解】画出可行域如下图所示,由图可知,向上平移基准直线到的位置,此时目标函数取得最大值为.故选C.【点睛】本小题主要考查利用线性规划的知识求目标函数的最大值,考查数形结合的数学思想方法,属于基础题.3、B【解析】

利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.4、A【解析】

由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.5、B【解析】

先求出,再利用向量垂直的坐标表示得到关于的方程,从而求出.【详解】因为,所以,因为,则,解得所以答案选B.【点睛】本题主要考查了平面向量的坐标运算,以及向量垂直的坐标表示,属于基础题.6、B【解析】

通过建系以及数量积的坐标运算,从而转化为函数的最值问题.【详解】根据题意,建立图示直角坐标系,,,则,,,.设,则,是边上一点,当时,取得最小值,故选.【点睛】本题主要考察解析法在向量中的应用,将平面向量的数量积转化成了函数的最值问题.7、D【解析】

设点,根据条件知点均在单位圆上,由向量数量积或斜率知识,可发现,对目标式子进行变形,发现其几何意义为两点到直线的距离之和有关.【详解】设,,均在圆上,且,设的中点为,则点到原点的距离为,点在圆上,设到直线的距离分别为,,,.【点睛】利用数形结合思想,发现代数式的几何意义,即构造系数,才能看出目标式子的几何意义为两点到直线距离之和的倍.8、B【解析】

含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.9、B【解析】

由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【点睛】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.10、C【解析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据幂函数定义知,又,由二倍角公式即可求解.【详解】因为为幂函数,所以,即,因为,所以,即,因为,所以,.故填.【点睛】本题主要考查了幂函数的定义,正弦的二倍角公式,属于中档题.12、【解析】

观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。13、1【解析】

设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.14、乙【解析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.15、【解析】

易证明中,且周长为,其中为定值,故只需考虑的最小值即可.【详解】由题,棱长均为2的三棱锥,故该三棱锥的四个面均为正三角形.又因为,故.故.且分别为上的中点,故.故周长为.故只需求的最小值即可.易得当时取得最小值为.故周长的最小值为.故答案为:【点睛】本题主要考查了立体几何中的距离最值问题,需要根据题意找到定量以及变量的最值情况即可.属于中档题.16、【解析】

先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),【解析】

(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【点睛】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.18、【解析】

利用同角公式求出两个角的余弦值,再根据两角和的余弦公式可得答案.【详解】因为为锐角,且,所以,,所以.【点睛】本题考查了同角公式,考查了两角和的余弦公式,属于基础题.19、(1);(2)当产量吨,平均生产成本最低.【解析】

(1)根据函数连续性的定义,可得在分段处两边的函数值相等,可得a的值;(2)求出平均成本的表达式,结合二次函数和基本不等式,可得平均生产成本的最小值点.【详解】(1)设,由函数是上的连续函数.即,代入得(2)设平均生产成本为,则当中,,函数连续且在单调递减,单调递增即当,元当,,由,当且仅当取等号,即当,元综上所述,当产量吨,平均生产成本最低.【点睛】本题考查的知识点是分段函数的应用,二次函数的图象和性质,基本不等式求最值,属于中档题.20、(Ⅰ)(Ⅱ)【解析】

(I)由得出,可得公比为2,再求出后可得;(II)由(I)得,则,可用错位相减法求.【详解】解:(Ⅰ)因为所以即.由因为所以,公比所以(Ⅱ)由(Ⅰ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论