版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省成都市航天中学校高一下数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前n项和为,且满足,则()A.1 B. C. D.20162.已知直线x+ay+4=0与直线ax+4y-3=0互相平行,则实数a的值为()A.±2 B.2 C.-2 D.03.已知等比数列{an}中,a3•a13=20,a6=4,则a10的值是()A.16 B.14 C.6 D.54.已知函数,则()A.2 B.-2 C.1 D.-15.甲、乙、丙三人随意坐下,乙不坐中间的概率为()A. B. C. D.6.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为()A. B. C. D.7.在等比数列中,,,则()A. B.C. D.8.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.39.已知两条不重合的直线和,两个不重合的平面和,下列四个说法:①若,,,则;②若,,则;③若,,,,则;④若,,,,则.其中所有正确的序号为()A.②④ B.③④ C.④ D.①③10.已知向量,,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数据的平均数为,则____________.12.已知数列满足,则__________.13.和2的等差中项的值是______.14.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.15.已知数列中,其前项和为,,则_____.16.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(I)求的值(II)求的最小正周期及单调递增区间.18.已知数列的前n项和为,且,求数列的通项公式.19.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?20.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.21.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用和关系得到数列通项公式,代入数据得到答案.【详解】已知数列的前n项和为,且满足,相减:取答案选C【点睛】本题考查了和关系,数列的通项公式,意在考查学生的计算能力.2、A【解析】
根据两直线平性的必要条件可得4-a【详解】∵直线x+ay+4=0与直线ax+4y-3=0互相平行;∴4×1-a⋅a=0,即4-a2=0当a=2时,直线分别为x+2y+4=0和2x+4y-3=0,平行,满足条件当a=-2时,直线分别为x-2y+4=0和-2x+4y-3=0,平行,满足条件;所以a=±2;故答案选A【点睛】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题。3、D【解析】
用等比数列的性质求解.【详解】∵是等比数列,∴,∴.故选D.【点睛】本题考查等比数列的性质,灵活运用等比数列的性质可以很快速地求解等比数列的问题.在等比数列中,正整数满足,则,特别地若,则.4、B【解析】
根据分段函数的表达式,直接代入即可得到结论.【详解】由分段函数的表达式可知,则,故选:.【点睛】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.5、A【解析】甲、乙、丙三人随意坐下有种结果,乙坐中间则有,乙不坐中间有种情况,概率为,故选A.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.6、B【解析】
直接利用概率公式计算得到答案.【详解】故选:【点睛】本题考查了概率的计算,属于简单题.7、B【解析】
设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.8、C【解析】
利用函数奇偶性和单调性,通过举例和证明逐项分析.【详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【点睛】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.9、C【解析】
根据线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论,逐项判断出各项的真假,即可求出.【详解】对①,若,,,则或和相交,所以①错误;对②,若,,则或,所以②错误;对③,根据面面平行的判定定理可知,只有,,,,且和相交,则,所以③错误;对④,根据面面垂直的性质定理可知,④正确.故选:C.【点睛】本题主要考查有关线面平行,面面平行,线面垂直,面面垂直的命题的判断,意在考查线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论的理解和应用,属于基础题.10、D【解析】
利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【详解】设两个向量的夹角为,则,故.故选:D.【点睛】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据求平均数的公式,得到关于的方程,求得.【详解】由题意得:,解得:,故填:.【点睛】本题考查求一组数据的平均数,考查基本数据处理能力.12、【解析】
数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。13、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题14、5【解析】设一部门抽取的员工人数为x,则.15、1【解析】
本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。16、【解析】
利用来求的通项.【详解】,化简得到,填.【点睛】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)2;(II)的最小正周期是,.【解析】
(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值.(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间.【详解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,则f()=﹣2sin()=2,(Ⅱ)因为.所以的最小正周期是.由正弦函数的性质得,解得,所以,的单调递增区间是.【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18、【解析】
利用公式,计算的通项公式,再验证时的情况.【详解】当时,;当时,不满足上式.∴【点睛】本题考查了利用求数列通项公式,忽略的情况是容易犯的错误.19、在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大【解析】
可建立如图所示的平面直角坐标系,根据截距式写出AB所在直线方程,然后可设G点的坐标为,再根据题目中的要求可列出教学楼的面积的表达式,,然后利用一元二次函数求最值即可.【详解】解:如图建立坐标系,可知所在直线方程为,即.设,由可知.∴.由此可知,当时,有最大值289平方米.故在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大.【点睛】本题考查一元二次函数求最值解决实际问题,属于中档题20、证明见解析【解析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【详解】证明:因为SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB=,得BC⊥AC,且AC、SA是面SAC内的两相交线,所以BC⊥面SAC;又AD面SAC,所以BC⊥AD,又已知SC⊥AD,且BC、SC是面SBC内两相交线,所以AD⊥面SBC.【点睛】本题考查了线面垂直的证明与性质,属于基础题.21、(1)(2)或(3)直线RS恒过定点【解析】
(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁带画课件教学课件
- 磁共振基本知识
- 盗窃案结案课件
- 2026年教育心理学考试题库及答案
- 2026年法律职业资格考试模拟题案例分析与法律应用
- 2026年工程机械维修操作测试题维护保养与故障诊断技能题目
- 2026年编程入门C经典算法习题
- 2026年法律顾问岗位招聘笔试题目集
- 2026年投资分析师实训跨境资产配置与风险管理实操试题
- 2026年高级翻译专业练习题含文化词汇翻译
- 学校中层管理岗位职责及分工明细(2026年版)
- 莆田春节习俗介绍
- 江苏省南京市2025届中考化学试卷(含答案)
- 飞行固模课件
- 2025年中考英语真题完全解读(重庆卷)
- 学前教育创意短片
- 2026年短视频合作合同
- 建筑临时设施设计方案
- 污水厂春节复工安全培训课件
- 电场防寒防冻知识培训课件
- 审贷分离管理办法
评论
0/150
提交评论