版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陇南市重点中学2026届数学高一下期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数满足,则的最大值为()A. B. C. D.2.数列满足,则数列的前项和等于()A. B. C. D.3.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.4.已知,则比多了几项()A.1 B. C. D.5.在中,已知三个内角为,,满足,则().A. B.C. D.6.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.7.在中,,,,则()A. B.或 C.或 D.8.已知,则的垂直平分线所在直线方程为()A. B.C. D.9.在中,角,,所对的边分别为,,,若,则最大角的余弦值为()A. B. C. D.10.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-10二、填空题:本大题共6小题,每小题5分,共30分。11.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.12.已知直线和,若,则a等于________.13.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.14.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.15.若不等式对于任意都成立,则实数的取值范围是____________.16.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.18.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.19.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.20.设等比数列{}的首项为,公比为q(q为正整数),且满足是与的等差中项;数列{}满足.(1)求数列{}的通项公式;(2)试确定的值,使得数列{}为等差数列:(3)当{}为等差数列时,对每个正整数是,在与之间插入个2,得到一个新数列{},设是数列{}的前项和,试求满足的所有正整数.21.如图,在四棱锥中,底面是正方形,底面,点是的中点,点是和的交点.(1)证明:平面;(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【点睛】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.2、A【解析】
当为正奇数时,可推出,当为正偶数时,可推出,将该数列的前项和表示为,结合前面的规律可计算出数列的前项和.【详解】当为正奇数时,由题意可得,,两式相减得;当为正偶数时,由题意可得,,两式相加得.因此,数列的前项和为.故选:A.【点睛】本题考查数列求和,找出数列的规律是解题的关键,考查推理能力,属于中等题.3、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.4、D【解析】
由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.5、C【解析】
利用正弦定理、余弦定理即可得出.【详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.6、A【解析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.7、B【解析】
利用正弦定理求出,然后利用三角形的内角和定理可求出.【详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【点睛】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.8、A【解析】
首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【点睛】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.9、D【解析】
设,由余弦定理可求出.【详解】设,所以最大的角为,故选D.【点睛】本题主要考查了余弦定理,大边对大角,属于中档题.10、A【解析】
等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.12、【解析】
根据两直线互相垂直的性质可得,从而可求出的值.【详解】直线和垂直,.解得.故答案为:【点睛】本题考查了直线的一般式,根据两直线的位置关系求参数的值,熟记两直线垂直系数满足:是关键,属于基础题.13、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.14、【解析】
设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.15、【解析】
利用换元法令(),将不等式左边构造成一次函数,根据一次函数的性质列不等式组,解不等式组求得的取值范围.【详解】令,,则.由已知得,不等式对于任意都成立.又令,则,即,解得.所以所求实数的取值范围是.故答案为:【点睛】本小题主要考查不等式恒成立问题的求解策略,考查三角函数的取值范围,考查一次函数的性质,考查化归与转化的数学思想方法,属于中档题.16、.【解析】
设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(1)根据向量平行的相关性质以及、即可得出向量,然后根据向量的模长公式即可得出结果;(2)首先可根据、写出与的坐标表示,然后根据向量垂直可得,最后通过计算即可得出结果.【详解】(1)因为,,所以,,,所以.(2)因为,,所以,.因为与垂直,所以,即,.【点睛】本题考查向量平行以及向量垂直的相关性质,考查向量的坐标表示以及向量的模长公式,若、且,则,考查计算能力,是中档题.18、(1);(2)【解析】
(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【点睛】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解析】
(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出结果;(3)先令,将原问题转化为求的最大值,进而可求出结果.【详解】(1)记该人在A公司第年收入为,在B公司连续工作年收入为,由题意可得:,,,;(2)由(1),当时,该人在A公司工资收入的总量为:(元);该人在B公司工资收入的总量为:(元)显然A公司工资总量高,所以应选择A公司;(3)令,则原问题即等价于求的最大值;当时,,若,则,即,解得;又,所以,因此,当时,;当时,.所以是数列的最大项,(元),即在A公司工作比在B公司工作的月工资收入最多可以多元.【点睛】本题主要考查数列的应用,熟记等差数列与等比数列的通项公式与求和公式即可,属于常考题型.20、(1);(2);(3).【解析】
(1)由已知可求出的值,从而可求数列的通项公式;(2)由已知可求,从而可依次写出,,若数列为等差数列,则有,从而可确定的值;(3)因为,,,检验知,3,4不合题意,适合题意.当时,若后添入的数则一定不适合题意,从而必定是数列中的某一项,设则误解,即有都不合题意.故满足题意的正整数只有.【详解】解(1)因为,所以,解得或(舍),则又,所以(2)由,得,所以,,,则由,得而当时,,由(常数)知此时数列为等差数列(3)因为,易知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁感应强度的测定
- 磁共振影像解读课件T1T2
- 短期培训学习心得
- 盾构吊装课件
- 2026年网络安全知识自测模拟卷
- 2026年一级建筑师专业知识与技能考试题集
- 2026年财务会计CFO必考知识点模拟题库
- 2026年心理学考研基础理论练习题
- 2026年人工智能算法与程序设计技能题库
- 2026年环境监测技术考试物联网在水质监测中的应用题目
- 积极思想培训
- 电杆基础施工专项方案
- 2026年马年德育实践作业(图文版)
- 2026春译林8下单词表【Unit1-8】(可编辑版)
- 2026年《必背60题》抖音本地生活BD经理高频面试题包含详细解答
- 2025至2030生物燃料酶行业调研及市场前景预测评估报告
- 2025中国即饮咖啡市场趋势报告-欧睿咨询
- 电影短片拍摄实践课件
- 电商平台对用户交易纠纷处理的机制或方案(2025完整版)
- 《经典常谈》导读课件教学
- 诚信单位创建申报资料标准模板
评论
0/150
提交评论