山东师大附中2026届高一下数学期末质量检测模拟试题含解析_第1页
山东师大附中2026届高一下数学期末质量检测模拟试题含解析_第2页
山东师大附中2026届高一下数学期末质量检测模拟试题含解析_第3页
山东师大附中2026届高一下数学期末质量检测模拟试题含解析_第4页
山东师大附中2026届高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东师大附中2026届高一下数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.2.已知,若,则的值是().A.-1 B.1 C.2 D.-23.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分4.若cosα=13A.13 B.-13 C.5.函数是()A.奇函数 B.非奇非偶函数 C.偶函数 D.既是奇函数又是偶函数6.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.7.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数的零点是和(均为锐角),则()A. B. C. D.9.将函数的图象向右平移个单位长度后得到函数的图象,若当时,的图象与直线恰有两个公共点,则的取值范围为()A. B. C. D.10.函数的一个对称中心是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在边长为2的菱形中,,是对角线与的交点,若点是线段上的动点,且点关于点的对称点为,则的最小值为______.12.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.13.方程在上的解集为______.14.已知算式,在方框中填入两个正整数,使它们的乘积最大,则这两个正整数之和是___.15.设函数,则的值为__________.16.在中,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若,讨论关于x的方程在上的解的个数.18.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.19.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().20.在中,内角的对边分别为,已知.(1)证明:;(2)若,求边上的高.21.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.2、C【解析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【点睛】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.3、B【解析】

首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.4、D【解析】

利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.5、C【解析】

利用诱导公式将函数的解析式化简,然后利用定义判断出函数的奇偶性.【详解】由诱导公式得,该函数的定义域为,关于原点对称,且,因此,函数为偶函数,故选C.【点睛】本题考查函数奇偶性的判断,解题时要将函数解析式进行简化,然后利用奇偶性的定义进行判断,考查分析问题和解决问题的能力,属于基础题.6、B【解析】

求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.7、A【解析】

根据和之间能否推出的关系,得到答案.【详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.8、B【解析】

将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.9、C【解析】

根据二倍角和辅助角公式化简可得,根据平移变换原则可得;当时,;利用正弦函数的图象可知若的图象与直线恰有两个公共点可得,解不等式求得结果.【详解】由题意得:由图象平移可知:当时,,,,,又的图象与直线恰有两个公共点,解得:本题正确选项:【点睛】本题考查根据交点个数求解角的范围的问题,涉及到利用二倍角和辅助角公式化简三角函数、三角函数图象平移变换原则的应用等知识;关键是能够利用正弦函数的图象,采用数形结合的方式确定角所处的范围.10、A【解析】

令,得:,即函数的对称中心为,再求解即可.【详解】解:令,解得:,即函数的对称中心为,令,即函数的一个对称中心是,故选:A.【点睛】本题考查了正切函数的对称中心,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-6【解析】

由题意,然后结合向量共线及数量积运算可得,再将已知条件代入求解即可.【详解】解:菱形的对称性知,在线段上,且,设,则,所以,又因为,当时,取得最小值-6.故答案为:-6.【点睛】本题考查了平面向量的线性运算,重点考查了向量共线及数量积运算,属中档题.12、【解析】

当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【点睛】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.13、【解析】

由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【点睛】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.14、.【解析】

设填入的数从左到右依次为,则,利用基本不等式可求得的最大值及此时的和.【详解】设在方框中填入的两个正整数从左到右依次为,则,于是,,当且仅当时取等号,此时.故答案为:15【点睛】本题考查基本不等式成立的条件,属于基础题.15、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.16、【解析】

由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案不唯一,见解析【解析】

首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.18、(1)见解析;(2)0.【解析】

(1)药物在白鼠血液内的浓度y与时间t的关系为:当a=1时,y=y1+y2;①当0<t<1时,y=﹣t4=﹣()2,所以ymax=f();②当1≤t≤3时,∵,所以ymax=7﹣2(当t时取到),因为,故ymax=f().(2)由题意y①⇒⇒,又0<t<1,得出a≤1;②⇒⇒由于1≤t≤3得到,令,则,所以,综上得到以0.19、(Ⅰ),,(Ⅱ)见解析【解析】

(Ⅰ)根据和项与通项关系得,利用等比数列定义求得结果(Ⅱ)利用放缩法以及等比数列求和公式证得结果【详解】(Ⅰ),由得,两式相减得故,又所以数列是以2为首项,公比为2的等比数列,因此,即.(Ⅱ)当时,,所以.当时,故又当时,,.因此对一切成立.【点睛】本题主要考查了利用和的关系以及构造法求数列的通项公式,同时考查利用放缩法证明数列不等式,解题难点是如何放缩,意在考查学生的数学建模能力和数学运算能力。20、(1)见解析(2)【解析】分析:(1)由,结合正弦定理可得,即;(2)由,结合余弦定理可得,从而可求得边上的高.详解:(1)证明:因为,所以,所以,故.(2)解:因为,所以.又,所以,解得,所以,所以边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.21、(1)见解析;(2);(3)【解析】

(1)由BB1⊥面ABC及线面垂直的性质可得AE⊥BB1,由AC=AB,E是BC的中点,及等腰三角形三线合一,可得AE⊥BC,结合线面垂直的判定定理可证得AE⊥面BB1C1C,进而由线面垂直的性质得到AE⊥B1C;(2)取B1C1的中点E1,连A1E1,E1C,根据异面直线夹角定义可得,∠E1A1C是异面直线A与A1C所成的角,设AC=AB=AA1=2,解三角形E1A1C可得答案.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP⊥平面ACC1A1,进而由二面角的定义可得∠PQE是二面角C-AG-E的平面角.【详解】证明:(1)因为BB1⊥面ABC,AE⊂面ABC,所以AE⊥BB1由AB=AC,E为BC的中点得到AE⊥BC∵BC∩BB1=B∴AE⊥面BB1C1C∴AE⊥B1C解:(2)取B1C1的中点E1,连A1E1,E1C,则AE∥A1E1,∴∠E1A1C是异面直线AE与A1C所成的角.设AC=AB=AA1=2,则由∠BAC=90°,可得A1E1=AE=,A1C=2,E1C1=EC=BC=∴E1C==∵在△E1A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论