版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连市旅顺口区第三高级中学2026届数学高一下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个2.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.3.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或4.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”中的()A.①② B.①③C.②③ D.①②③5.已知角的终边过点,则()A. B. C. D.6.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.567.角的终边过点,则等于()A. B. C. D.8.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元9.将函数的图像左移个单位,则所得到的图象的解析式为A. B.C. D.10.已知函数的最大值是2,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,,则_______;_______.12.函数在的递减区间是__________13.若,,则___________.14.正方形和内接于同一个直角三角形ABC中,如图所示,设,若两正方形面积分别为=441,=440,则=______15.已知sin+cosα=,则sin2α=__16.不等式的解集是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设的内角所对应的边长分别是,且.(Ⅰ)当时,求的值;(Ⅱ)当的面积为时,求的值.18.如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱.(1)证明FO∥平面CDE;(2)设BC=CD,证明EO⊥平面CDE.19.已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求的取值范围.20.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).21.已知函数,(1)求的值;(2)求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【点睛】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.2、C【解析】
作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.3、C【解析】
由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.4、A【解析】试题分析:结合互斥事件和对立事件的定义,即可得出结论解:根据题意,结合互斥事件、对立事件的定义可得,事件“两球都为白球”和事件“两球都不是白球”;事件“两球都为白球”和事件“两球中恰有一白球”;不可能同时发生,故它们是互斥事件.但这两个事件不是对立事件,因为他们的和事件不是必然事件.故选A考点:互斥事件与对立事件.5、D【解析】
首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【详解】由已知得,则.故选D【点睛】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.6、A【解析】由等差数列的性质得,,其前项之和为,故选A.7、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.8、B【解析】∵,∵数据的样本中心点在线性回归直线上,
回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,
∴广告费用为6万元时销售额为9.4×6+9.1=65.5,
故选B.9、C【解析】
由三角函数的图象变换,将函数的图像左移个单位,得到,即可得到函数的解析式.【详解】由题意,将函数的图像左移个单位,可得的图象,所以得到的函数的解析式为,故选C.【点睛】本题主要考查了三角函数的图象变换,其中熟记三角函数的图象变换的规则是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、B【解析】
根据诱导公式以及两角和差的正余弦公式化简,根据辅助角公式结合范围求最值取得的条件即可得解.【详解】由题函数,最大值是2,所以,平方处理得:,所以,,所以.故选:B【点睛】此题考查根据三角函数的最值求参数的取值,考查对三角恒等变换的综合应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.12、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.13、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.14、【解析】
首先根据在正方形S1和S2内,S1=441,S2=440,分别求出两个正方形的边长,然后分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式,求出sin2α的值即可.【详解】因为S1=441,S2=440,所以FD21,MQ=MN,因为AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),两边平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案为:.【点睛】本题主要考查了三角函数的求值问题,考查了正方形、直角三角形的性质,属于中档题,解答此题的关键是分别表示出AF、FC、AM、MC的长度,最后根据AF+FC=AM+MC,列出关于α的三角函数等式.15、【解析】∵,∴即,则.故答案为:.16、【解析】
由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【详解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即则:故:【点睛】本题主要考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.18、(1)证明见解析;(2)证明见解析;【解析】
(1)利用中点做辅助线,构造出平行四边形即可证明线面平行;(2)根据所给条件构造出菱形,再根据两个对应的线段垂直关系即可得到线面垂直.【详解】证明:(1)取CD中点M,连结OM,连结EM,在矩形ABCD中,又,则,于是四边形EFOM为平行四边形.∴FO∥EM.又∵FO平面CDE,且EM平面CDE,∴FO∥平面CDE.(2)连结FM,由(1)和已知条件,在等边ΔCDE中,CM=DM,EM⊥CD且因此平行四边形EFOM为菱形,从而EO⊥FM.∵CD⊥OM,CD⊥EM∴CD⊥平面EOM,从而CD⊥EO.而FMCD=M,所以EO⊥平面CDF.【点睛】(1)线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线平行于此平面;(2)线面垂直的判定定理:一条直线与平面内两条相交直线垂直,则该直线垂直于此平面.19、(1);(2)【解析】
(1)由共线向量的坐标运算化简可得,将化切后代入即可(2)利用向量的坐标运算化简,利用正弦定理求,根据角的范围求值域即可.【详解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范围是.【点睛】本题主要考查了向量数量积的坐标运算,三角恒等式,型函数的值域,属于中档题.20、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,所以,,则,即,解得,故不存在这样的实数;②当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,故,,则,即,解得,故不存在这样的实数;③当时,则为上的递增函数,故函数在上不存在最大值和最小值,综上,不存在这样的实数(3)当或时,函数的零点个数为1;当或时,函数的零点个数为2;当时,函数的零点个数为3【点睛】本题考查分段函数的应用,考查利用函数的单调性求最值,考查函数的零点个数,着重考查分类讨论思想21、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁场导轨导体棒模型课件
- 短裤培训教学制作
- 短句变长句课件
- 2026年法务专员企业法律风险防范与合同管理实操练习题
- 2026年化学实验技能化学分析实验操作及数据处理能力测试题
- 2026年网络经济下的企业战略决策模拟题目
- 2026年房地产估价师招录考试题
- 2026年海关系统公务员招录预测模拟题及答案
- 2026年大学语文考试试题集古代文学与现代文学赏析
- 2026年语言翻译如法语德语等词汇及语法专项练习题目
- 义务教育均衡发展迎检路线及解说词2
- 大型船舶拆除方案范本
- 小作坊卫生规范制度
- 小学语文课堂美育融合教学策略
- 案件不网上公开申请书
- 贸易安全培训讲义课件
- GB/T 13609-2025天然气气体取样
- 教育资源分享平台管理框架模板
- 园林环卫安全培训内容课件
- 神经刺激治疗患者知情同意书模板
- 软件系统上线测试与验收报告
评论
0/150
提交评论