云南省西双版纳市2026届高一下数学期末复习检测模拟试题含解析_第1页
云南省西双版纳市2026届高一下数学期末复习检测模拟试题含解析_第2页
云南省西双版纳市2026届高一下数学期末复习检测模拟试题含解析_第3页
云南省西双版纳市2026届高一下数学期末复习检测模拟试题含解析_第4页
云南省西双版纳市2026届高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省西双版纳市2026届高一下数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A., B., C., D.,2.关于的不等式的解集中,恰有3个整数,则的取值范围是()A. B.C. D.3.下列四个结论正确的是()A.两条直线都和同一个平面平行,则这两条直线平行B.两条直线没有公共点,则这两条直线平行C.两条直线都和第三条直线平行,则这两条直线平行D.两条直线都和第三条直线垂直,则这两条直线平行4.《九章算术》卷第六《均输》中,提到如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其大致意思是说,若九节竹每节的容量依次成等差数列,下三节容量四升,上四节容量三升,则中间两节的容量各是()A.升、升 B.升、升C.升、升 D.升、升5.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.6.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A. B. C. D.7.已知数列中,,,且,则的值为()A. B. C. D.8.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.9.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位10.直线的倾斜角不可能为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.12.在平面直角坐标系中,点到直线的距离为______.13.已知函数的图象如图所示,则不等式的解集为______.14.已知不等式x2-x-a>0的解集为x|x>3或15.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.16.已知过两点,的直线的倾斜角是,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列满足,.(1)试求出,,;(2)猜想数列的通项公式并用数学归纳法证明.18.等差数列,等比数列,,,如果,(1)求的通项公式(2),求的最大项的值(3)将化简,表示为关于的函数解析式19.如图,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.20.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.21.已知点、、(),且.(1)求函数的解析式;(2)如果当时,两个函数与的图象有两个交点,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

试题分析:由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选B.【考点定位】本题考查分层抽样与统计图,属于中等题.2、C【解析】

首先将原不等式转化为,然后对进行分类讨论,再结合不等式解集中恰有3个整数,列出关于的条件,求解即可.【详解】关于的不等式等价于当时,即时,于的不等式的解集为,要使解集中恰有3个整数,则;当时,即时,于的不等式的解集为,不满足题意;当时,即时,于的不等式的解集为,要使解集中恰有3个整数,则;综上,.故选:C.【点睛】本题主要考了一元二次不等式的解法以及分类讨论思想,属于中档题.3、C【解析】

利用空间直线平面位置关系对每一个选项分析得解.【详解】A.两条直线都和同一个平面平行,则这两条直线平行、相交或异面,所以该选项错误;B.两条直线没有公共点,则这两条直线平行或异面,所以该选项错误;C.两条直线都和第三条直线平行,则这两条直线平行,是平行公理,所以该选项正确;D.两条直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以该选项错误.故选:C【点睛】本题主要考查直线平面的位置关系的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解析】

由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,an,公差为d,利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出中间一节的容量.【详解】由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,a9,公差为d,即=4,=3,∴=4,=3,解得,,∴中间两节的容量,,故选:D.【点睛】本题考查等差数列的通项公式,利用等差数列的通项公式列出方程组,解出首项与公差即可,考查计算能力,属于基础题.5、B【解析】

计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.6、A【解析】设甲到达时刻为,乙到达时刻为,依题意列不等式组为,画出可行域如下图阴影部分,故概率为.7、A【解析】

由递推关系,结合,,可求得,,的值,可得数列是一个周期为6的周期数列,进而可求的值。【详解】因为,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得数列是一个周期为6的周期数列,所以,故选A。【点睛】本题考查由递推关系求数列中的项,考查数列周期的判断,属基础题。8、B【解析】

利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【点睛】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.9、D【解析】

把系数2提取出来,即即可得结论.【详解】,因此要把图象向右平移个单位.故选D.【点睛】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.10、D【解析】

根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.12、2【解析】

利用点到直线的距离公式即可得到答案。【详解】由点到直线的距离公式可知点到直线的距离故答案为2【点睛】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。13、【解析】

根据函数图象以及不等式的等价关系即可.【详解】解:不等式等价为或,

则,或,

故不等式的解集是.

故答案为:.【点睛】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.14、6【解析】

由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)16、【解析】

由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2),证明见详解.【解析】

(1)由题意得,在中分别令可求结果;(2)由数列前四项可猜想,运用数学归纳法可证明.【详解】解:(1),当时,,,当时,,,当时,,,所以,,(2)猜想下面用数学归纳法证明:假设时,有成立,则当时,有,故对成立.【点睛】该题考查由数列递推式求数列的项、通项公式,考查数学归纳法,考查学生的运算求解能力.18、(1)(2)(3)【解析】

(1)设等比数列的公比为,运用等比数列的通项公式,解方程可得公比,即可得到所求;(2)判断的单调性,可得所求最大值;(3)讨论当时,当时,由分组求和,以及等差数列和等比数列的求和公式,计算可得所求和.【详解】(1)设等比数列的公比为,,,由,,可得,,解得:,数列的通项公式:.(2)由题意得,,当时,递增;当时,递减;由,可得的最大项的值为.(3)由题意得,当时,;当时,综上函数解析式【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的分组求和,考查化简运算能力,属于中档题.19、(1)14海里/小时;(2).【解析】

(1),∴∴,∴V甲海里/小时;(2)在中,由正弦定理得∴∴.点评:主要是考查了正弦定理和余弦定理的运用,属于基础题.20、(1)445米;(2)在弧的中点处【解析】

(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【点睛】本题考查正弦定理,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论