重庆市万州二中2026届数学高一下期末经典模拟试题含解析_第1页
重庆市万州二中2026届数学高一下期末经典模拟试题含解析_第2页
重庆市万州二中2026届数学高一下期末经典模拟试题含解析_第3页
重庆市万州二中2026届数学高一下期末经典模拟试题含解析_第4页
重庆市万州二中2026届数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市万州二中2026届数学高一下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的最小值是()A.2 B.6 C.2 D.22.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.3.已知曲线,如何变换可得到曲线()A.把上各点的横坐标伸长到原来的倍,再向右平移个单位长度B.把上各点的横坐标伸长到原来的倍,再向左平移个单位长度C.把上各点的横坐标缩短到原来的倍,再向右平移个单位长度D.把上各点的横坐标缩短到原来的倍,再向左平移个单位长度4.在中,,,则的形状是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定5.在边长为的正方形内有一个半径为1的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.6.下列函数中,既是偶函数又在区间上单调递减的是(

)A. B. C. D.7.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.8.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛 B.22斛C.36斛 D.66斛9.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.10.下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;③侧棱必与底面垂直;④侧面垂直于底面.其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)12.等比数列的首项为,公比为q,,则首项的取值范围是____________.13.已知等差数列的公差为2,若成等比数列,则________.14.设数列的前项和,若,,则的通项公式为_____.15.设是等差数列的前项和,若,则___________.16.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为100且支出在元的样本,其频率分布直方图如图,则支出在元的同学人数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱柱中,底面ABCD为菱形,平面ABCD,AC与BD交于点O,,,.(1)证明:平面平面;(2)求二面角的大小.18.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各自随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:、、、、、,整理得到如下频率分布直方图:(1)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(2)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值甲与乙及方差甲与乙的大小关系(只需写出结论),并计算其中的甲、甲(同一组中的数据用该组区间的中点值作代表).19.设数列的前项和为,若且求若数列满足,求数列的前项和.20.如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F分别为AC,BP中点.(1)求证:EF∥平面PCD;(2)求直线DP与平面ABCD所成角的正弦值.21.如图,四棱锥中,底面,,,点在线段上,且.(1)求证:平面;(2)若,,,求四棱锥的体积;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:因为,故.考点:基本不等式的运用,考查学生的基本运算能力.2、D【解析】由正弦定理得A+C=180°-60°=120°,

由题意得:A有两个值,且这两个值之和为180°,

∴利用正弦函数的图象可得:60°<A<120°,

若A=90,这样补角也是90°,一解,不合题意,<sinA<1,

∵x=sinA,则2<x<故选D3、D【解析】

用诱导公式把两个函数名称化为相同,然后再按三角函数图象变换的概念判断.【详解】,∴可把的图象上各点的横坐标缩短到原来的倍,再向左平移个单位长度或先向左平移个单位,再把图象上各点的横坐标缩短到原来的倍(纵坐标不变)可得的图象,故选:D.【点睛】本题考查三角函数的图象变换,解题时首先需要函数的前后名称相同,其次平移变换与周期变换的顺序不同时,平移的单位有区别.向左平移个单位所得图象的函数式为,而不是.4、C【解析】

利用余弦定理求出,再利用余弦定理求得的值,即可判断三角形的形状.【详解】在中,,解得:;∵,∵,,∴是直角三角形.故选:C.【点睛】本题考查余弦定理的应用、三角形形状的判定,考查逻辑推理能力和运算求解能力.5、A【解析】

通过几何概型可得答案.【详解】由几何概型可知,则.【点睛】本题主要考查几何概型的相关计算,难度中等.6、D【解析】

利用函数的奇偶性和单调性,逐一判断各个选项中的函数的奇偶性和单调性,进而得出结论.【详解】由于函数是奇函数,不是偶函数,故排除A;由于函数是偶函数,但它在区间上单调递增,故排除B;由于函数是奇函数,不是偶函数,故排除C;由于函数是偶函数,且满足在区间上单调递减,故满足条件.故答案为:D【点睛】本题主要考查了函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及基本初等函数的奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、C【解析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.8、B【解析】试题分析:设圆锥底面半径为r,则14×2×3r=8,所以r=163,所以米堆的体积为14考点:圆锥的性质与圆锥的体积公式9、C【解析】

画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.10、A【解析】

根据棱柱的概念和四棱锥的基本特征,逐项进行判定,即可求解,得到答案.【详解】由题意,根据棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,侧棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等,①正确;②两对相对的侧面互相平行,不正确,如下图:左右侧面不平行.本题题目说的是“四棱柱”不一定是“直四棱柱”,所以,③④不正确,故选A.【点睛】本题主要考查了四棱柱的概念及其应用,其中解答中熟记棱柱的概念以及四棱锥的基本特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(1,2);对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞).可得b<a<c故答案为:b<a<c.12、【解析】

由题得,利用即可得解【详解】由题意知,,可得,又因为,所以可求得.故答案为:【点睛】本题考查了等比数列的通项公式其前n项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.13、【解析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..14、【解析】

已知求,通常分进行求解即可。【详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【点睛】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。15、1.【解析】

由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.16、30【解析】

由频率分布直方图求出支出在元的概率,由此能力求出支出在元的同学的人数,得到答案.【详解】由频率分布直方图,可得支出在元的概率,,所以支出在元的同学的人数为人.【点睛】本题主要考查了频率分布直方图的应用,以及概率的计算,其中解答中熟记频率分布直方图的性质,合理求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)﹒【解析】

(1)证面面垂直只需证一个平面内有一条直线和另一个平面垂直(2)通过作图需找二面角的平面角即可【详解】(1)证明:由平面ABCD,有;由四边形ABCD为菱形,所以AC⊥BD:又因为,所以平面,因为平面,所以平面平面,(2)过O作于E,连结BE,由(1)知平面,所以,又因为,,所以平面BDE,从而;由,,所以∠OEB为二面角的平面角.由为等边三角形且O为BD中点,有,,,由,有,由,有,从而.在中,,所以,即.综上,二面角的大小为﹒【点睛】面面垂直可通过线面垂直进行证明,二面角的平面角有正有负,解题时要注意结合题设关系进行正确判断18、(1);(2)甲乙,甲乙,甲=,甲=【解析】

(1)根据每组小矩形的面积确定中位数所在区间,即可求解;(2)根据直方图特征即可判定甲乙,甲乙,根据平均数和方差的公式分别计算求值.【详解】(1)由甲高中频率分布直方图可得:第一组频率0.1,第二组频率0.2,第三组频率0.3,所以中位数在第三组,甲;(2)根据两个频率分布直方图可得:甲乙,甲乙甲=甲=【点睛】此题考查频率分布直方图,根据两组直方图特征判断中位数和方差的大小关系,求中位数,平均数和方差,关键在于熟练掌握相关数据的求法,准确计算得解.19、(1);(2).【解析】

(1)由时,,再验证适合,于是得出,再利用等差数列的求和公式可求出;(2)求出数列的通项公式,判断出数列为等比数列,再利用等比数列的求和公式求出数列的前项和.【详解】(1)当且时,;也适合上式,所以,,则数列为等差数列,因此,;(2),且,所以,数列是等比数列,且公比为,所以.【点睛】本题考查数列的前项和与数列通项的关系,考查等差数列与等比数列的求和公式,考查计算能力,属于中等题.20、(1)见证明;(2)【解析】

(1)根据EF是△BDP的中位线可知EF∥DP,即可利用线线平行得出线面平行;(2)取AB中点O,连接PO,DO,可证明∠PDO为DP与平面ABCD所成角,在Rt△DOP中求解即可.【详解】(1)因为E为AC中点,所以DB与AC交于点E.因为E,F分别为AC,BP中点,所以EF是△BDP的中位线,所以EF∥DP.又DP⊂平面PCD,EF⊄平面PCD,所以EF∥平面PCD.(2)取AB中点O,连接PO,DO∵△PAB为正三角形,∴PO⊥AB,又∵平面ABCD⊥平面PAB∴P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论