版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阿坝市重点中学2026届高一数学第二学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为()A. B. C. D.2.在中,已知,,则为()A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形3.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2604.已知是奇函数,且.若,则()A.1 B.2 C.3 D.45.已知两个正数a,b满足,则的最小值是(
)A.2 B.3 C.4 D.56.已知平面向量,,且,则实数的值为()A. B. C. D.7.如图所示,从气球上测得正前方的河流的两岸,的俯角分别为,,此时气球的高度是60m,则河流的宽度等于()A.m B.m C.m D.m8.已知向量,且,则的值为()A.1 B.3 C.1或3 D.49.已知向量,若,则()A. B. C. D.10.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足,则的最大值为_______.12.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.13.已知为等差数列,为其前项和,若,则,则______.14.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.15.某县现有高中数学教师500人,统计这500人的学历情况,得到如下饼状图,该县今年计划招聘高中数学新教师,只招聘本科生和研究生,使得招聘后该县高中数学专科学历的教师比例下降到,且研究生的比例保持不变,则该县今年计划招聘的研究生人数为_______.16.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,,.(Ⅰ)若四边形是平行四边形,求,的值;(Ⅱ)若为等腰直角三角形,且为直角,求,的值.18.已知等比数列的各项均为正数,且,,数列的前项和.(1)求;(2)记,求数列的前项和.19.已知圆,过点的直线与圆相交于不同的两点,.(1)若,求直线的方程.(2)判断是否为定值.若是,求出这个定值;若不是,请说明理由.20.某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间内(单位:),统计的茎叶图如图所示:(Ⅰ)按分层抽样的方法从单果直径落在,的苹果中随机抽取6个,则从,的苹果中各抽取几个?(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在内的概率;(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案:所有苹果均以5.5元/千克收购;方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在内按35元/箱收购,在内按45元/箱收购,在内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.21.已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通项公式;(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择D选项.2、A【解析】
已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选A.【点睛】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.3、A【解析】
根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.4、C【解析】
根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.5、D【解析】
根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.6、B【解析】
先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.7、A【解析】
在直角三角形中,利用锐角三角函数求出的长,在直角三角形中,利用锐角三角函数求出的长,最后利用进行求解即可.【详解】在直角三角形中,.在直角三角形中,.所以有.故选:A【点睛】本题考查了锐角三角函数的应用,考查了数学运算能力.8、B【解析】
先求出,再利用向量垂直的坐标表示得到关于的方程,从而求出.【详解】因为,所以,因为,则,解得所以答案选B.【点睛】本题主要考查了平面向量的坐标运算,以及向量垂直的坐标表示,属于基础题.9、A【解析】
先根据向量的平行求出的值,再根据向量的加法运算求出答案.【详解】向量,,
解得,
∴,
故选A.【点睛】本题考查了向量的平行和向量的坐标运算,属于基础题.10、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据约束条件,画出可行域,目标函数可以看成是可行域内的点和的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件可以画出可行域,如下图阴影部分所示,目标函数可以看成是可行域内的点和的连线的斜率,因此可得,当在点时,斜率最大联立,得即所以此时斜率为,故答案为.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.12、【解析】
根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.13、【解析】
利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.14、①②【解析】
对四个命题分别进行判断即可得到结论【详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【点睛】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。15、50【解析】
先计算出招聘后高中数学教师总人数,然后利用比例保持不变,得到该县今年计划招聘的研究生人数.【详解】招聘后该县高中数学专科学历的教师比例下降到,则招聘后,该县高中数学教师总人数为,招聘后研究生的比例保持不变,该县今年计划招聘的研究生人数为.【点睛】本题主要考查学生的阅读理解能力和分析能力,从题目中提炼关键字眼“比例保持不变”是解题的关键.16、否【解析】
根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)由得到x,y的方程组,解方程组即得x,y的值;(Ⅱ)由题得和,解方程组即得,的值.【详解】(Ⅰ),,,,,由,,;(Ⅱ),,为直角,则,,又,,再由,解得:或.【点睛】本题主要考查平面向量的数量积运算和模的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)(2)【解析】
(1)先设等比数列的公比为,再求解即可;(2)由已知条件可得,再利用错位相减法求和即可.【详解】解:(1)设等比数列的公比为,则,由,,则,即,则,(2)由数列的前项和,则,即当时,,即,又,所以,,①,②①-②得:,即.【点睛】本题考查了等比数列通项公式的求法,重点考查了错位相减法求数列前项和,属中档题.19、(1)或.(2)是,定值.【解析】
(1)根据题意设出,再联立直线方程和圆的方程,得到,,然后由列式,再将的值代入求解,即可求出;(2)先根据特殊情况,当直线与轴垂直时,求出,再说明当直线与轴不垂直时,是否成立,即可判断.【详解】(1)由已知得不与轴垂直,不妨设,,.联立消去得,则有,又,,,解得或.所以,直线的方程为或.(2)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当不与轴垂直时,又由(1),,且,所以.综上,为定值.【点睛】本题主要考查直线与圆的位置关系的应用,韦达定理的应用,数量积的坐标表示,以及和圆有关的定值问题的解法的应用,意在考查学生的数学运算能力,属于中档题.20、(Ⅰ)4个;(Ⅱ);(Ⅲ)方案是【解析】
(Ⅰ)单果直径落在,,,的苹果个数分别为6,12,分层抽样的方法从单果直径落在,,,的苹果中随机抽取6个,单果直径落在,,,的苹果分别抽取2个和4个;(Ⅱ)从这6个苹果中随机抽取2个,基本事件总数,这两个苹果单果直径均在,内包含的基本事件个数,由此能求出这两个苹果单果直径均在,内的概率;(Ⅲ)分别求出按方案与方案该合作农场收益,比较大小得结论.【详解】(Ⅰ)由茎叶图可知,单果直径落在,的苹果分别为6个,12个,依题意知抽样比为,所以单果直径落在的苹果抽取个数为个,单果直径落在的苹果抽取个数为个(Ⅱ)记单果直径落在的苹果为,,记单果直径落在的苹果为,若从这6个苹果中随机抽取2个,则所有可能结果为:,,,,,,,,,,,,,,,即基本事件的总数为15个.这两个苹果单果直径均落在内包含的基本事件个数为6个,所以这两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 日常考核制度及细则
- 教科书里四等人制度
- 蓝月亮业务考核制度
- 包保责任考核制度
- 建立通报考核制度
- 创新干事考核制度
- 产品策划考核制度
- 机训大队考核制度
- 阿里客服考核制度
- 工地领班考核制度
- 03K501-1 燃气红外线辐射供暖系统设计选用及施工安装
- 2026年甘肃省公信科技有限公司面向社会招聘80人(第一批)考试重点题库及答案解析
- 2026年上海市虹口区初三上学期一模化学试卷和参考答案
- 高考英语同义词近义词(共1142组)
- 《智能物联网技术与应用》课件 第八章 数字孪生技术
- 单招第四大类考试试题及答案
- 2026年东营科技职业学院单招综合素质考试必刷测试卷附答案
- 制氢设备销售合同范本
- 《形象塑造》课件
- Profinet(S523-FANUC)发那科通讯设置
- 高中名校自主招生考试数学重点考点及习题精讲讲义下(含答案详解)
评论
0/150
提交评论