版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省台江县第二中学2026届高一下数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.化简=()A. B.C. D.2.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.3.已知,,,则的最小值为A. B. C. D.44.过正方形的顶点,作平面,若,则平面和平面所成的锐二面角的大小是A. B.C. D.5.对于任意实数,下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则6.已知,,,,则下列等式一定成立的是()A. B. C. D.7.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.8.直线l:x+y﹣1=0与圆C:x2+y2=1交于两点A、B,则弦AB的长度为()A.2 B. C.1 D.9.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.210.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,角、、所对的边为、、,若的面积为,且,,则的弧度为__________.12.已知点是所在平面内的一点,若,则__________.13.如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高__________.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______15.函数的零点的个数是______.16.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的顶点,边上的高所在的直线方程为,为的中点,且所在的直线方程为.(1)求顶点的坐标;(2)求过点且在轴、轴上的截距相等的直线的方程.18.如图,四面体中,分别是的中点,,.(1)求证:平面;(2)求三棱锥的体积.19.已知函数.(1)若,求函数有零点的概率;(2)若,求成立的概率.20.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.21.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据向量的加法与减法的运算法则,即可求解,得到答案.【详解】由题意,根据向量的运算法则,可得=++==,故选D.【点睛】本题主要考查了向量的加法与减法的运算法则,其中解答中熟记向量的加法与减法的运算法则,准确化简、运算是解答的关键,着重考查了运算与求解能力,属于基础题.2、D【解析】
根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【点睛】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.3、C【解析】
化简条件得,化简,利用基本不等式,即可求解,得到答案.【详解】由题意,知,可得,则,当且仅当时,即时取得等号,所以,即的最小值为,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件:一正、二定、三相等是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.5、C【解析】
根据是任意实数,逐一对选项进行分析即得。【详解】由题,当时,,则A错误;当,时,,则B错误;可知,则有,因此C正确;当时,有,可知C错误.故选:C【点睛】本题考查判断正确命题,是基础题。6、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.7、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.8、B【解析】
利用直线和圆相交所得弦长公式,计算出弦长.【详解】圆的圆心为,半径为,圆心到直线的距离为,所以.故选:B【点睛】本小题主要考查直线和圆相交所得弦长的计算,属于基础题.9、B【解析】根据椭圆可以知焦点为,离心率,故选B.10、A【解析】
先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角形的面积公式求出的值,结合角为锐角,可得出角的弧度数.【详解】由三角形的面积公式可知,的面积为,得,为锐角,因此,的弧度数为,故答案为.【点睛】本题考查三角形面积公式的应用,考查运算求解能力,属于基础题.12、【解析】
设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.13、1【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案为1.考点:正弦定理的应用.14、1.1【解析】
先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.15、【解析】
在同一直角坐标系内画出函数与函数的图象,利用数形结合思想可得出结论.【详解】在同一直角坐标系内画出函数与函数的图象如下图所示:由图象可知,函数与函数的图象的交点个数为,因此,函数的零点个数为.故答案为:.【点睛】本题考查函数零点个数的判断,在判断函数的零点个数时,一般转化为对应方程的根,或转化为两个函数图象的交点个数,考查数形结合思想的应用,属于中等题.16、【解析】
,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】
(1)首先确定直线的斜率,从而得到直线的方程;因为点是直线与的交点,联立两条直线可求得点坐标;(2)设,利用中点坐标公式表示出;根据在直线上,在直线上,可构造方程组,求得点坐标;根据截距相等,可分为截距为和不为两种情况来分别求解出直线方程.【详解】(1)由已知得:直线的方程为:,即:由,解得:的坐标为(2)设,则则,解得:直线在轴、轴上的截距相等当直线经过原点时,设直线的方程为把点代入,得:,解得:此时直线的方程为:当直线不经过原点时,设直线的方程为把点代入,得:,解得:此时直线的方程为直线的方程为:或【点睛】本题考查直线交点、直线方程的求解问题,易错点是在已知截距相等的情况下,忽略截距为零的情况,造成丢根.18、(1)见解析;(2)【解析】
(1)连接,由等腰三角形三线合一,可得,,再勾股定理可得,进而根据线面垂直的判定定理得到平面;(2)根据等积法可得,结合(1)中结论,可得即为棱锥的高,代入棱锥的体积公式,可得答案.【详解】证明:(1)连接.,,.,为中点,,,为中点,,,在中,,,,,,即.又,,平面平面.(2)等边的面积为,为中点而,.【点睛】本题考查的知识点是直线与平面垂直的判定,棱锥的体积公式,熟练掌握空间直线与直线垂直、直线与平面垂直之间的转化关系是解答的关键,属于中档题.19、(1);(2)【解析】
(1)求得有零点的条件,运用古典概率的公式,计算可得所求;(2)若,即,画出不等式组表示的区域,计算面积可得所求.【详解】解:(1)函数有零点的条件为,即,,可得事件的总数为,而有零点的个数为,,,,,,共7个,则函数有零点的概率为;(2)若,即,画出的区域,可得成立的概率为.【点睛】本题考查古典概率和几何概率的求法,考查运算能力,属于基础题.20、(1);(2)【解析】
(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026江西中江民爆器材有限公司招聘1人备考题库附答案详解(精练)
- 2026福建龙岩市连城县新泉中心小学代课教师招聘2人备考题库带答案详解(突破训练)
- 2026贵州贵阳花溪区元畅采阳新能源科技有限公司招聘1人备考题库附答案详解(a卷)
- 2026甘肃兰州新区招聘幼儿教师38人备考题库带答案详解(满分必刷)
- 2026海南省第二人民医院招聘药学人员4人备考题库(一)带答案详解(典型题)
- 2026福建泉州丰泽区东湖实验幼儿园招聘备考题库带答案详解(巩固)
- 2026浙江中医药大学附属第三医院(第三临床医学院康复医学院)博士后招聘27人备考题库含答案详解(轻巧夺冠)
- 2026贵州黔南州三都县中国移动公司招聘14人备考题库及答案详解(名校卷)
- 2026贵州财经大学招聘4人备考题库带答案详解(b卷)
- 2026青海黄南州州直部分单位“雏鹰计划”人员招聘1人备考题库附答案详解(综合题)
- 基于区域对比的地理综合思维培养-以澳大利亚和巴西人口分布专题复习课设计(湘教版·八年级)
- 2025年高考(海南卷)历史真题(学生版+解析版)
- 2026河北石家庄技师学院选聘事业单位工作人员36人备考考试试题附答案解析
- NB-SH-T 0945-2017 合成有机酯型电气绝缘液 含2025年第1号修改单
- 企业培训课程需求调查问卷模板
- 2026届福州第三中学数学高二上期末检测模拟试题含解析
- 2026年细胞治疗 免疫性疾病治疗项目商业计划书
- 化工复产安全培训
- (一模)郑州市2026年高中毕业年级(高三)第一次质量预测数学试卷(含答案及解析)
- NBT 11898-2025《绿色电力消费评价技术规范》
- 2026年总经理工作计划
评论
0/150
提交评论