2026届景德镇市重点中学数学高一下期末经典试题含解析_第1页
2026届景德镇市重点中学数学高一下期末经典试题含解析_第2页
2026届景德镇市重点中学数学高一下期末经典试题含解析_第3页
2026届景德镇市重点中学数学高一下期末经典试题含解析_第4页
2026届景德镇市重点中学数学高一下期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届景德镇市重点中学数学高一下期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.高一某班男生36人,女生24人,现用分层抽样的方法抽取一个容量为的样本,若抽出的女生为12人,则的值为()A.18 B.20 C.30 D.362.已知数列是各项均为正数且公比不等于的等比数列.对于函数,若数列为等差数列,则称函数为“保比差数列函数”.现有定义在上的如下函数:①;②;③;④,则为“保比差数列函数”的所有序号为()A.①② B.③④ C.①②④ D.②③④3.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点4.设x、y满足约束条件,则z=2x﹣y的最大值为()A.0 B.0.5 C.1 D.25.已知向量,,,且,则()A. B. C. D.6.定义在上的函数若关于的方程(其中)有个不同的实根,,…,,则()A. B. C. D.7.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.8.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或99.“”是“直线:与直线:垂直”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.已知数列{an}前n项和为Sn,且满足①数列{an}必为等比数列;②p=1时,S5=3132;③正确的个数有()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.12.已知指数函数上的最大值与最小值之和为10,则=____________。13.设,则函数是__________函数(奇偶性).14.在中,是斜边的中点,,,平面,且,则_____.15.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和_____.16.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角A,B,C所对的边分别为a,b,c,且.(1)若,求的值;(2)若,求b,c的值.18.已知数列为等比数列,,公比,且成等差数列.(1)求数列的通项公式;(2)设,,求使的的取值范围.19.已知等差数列满足,.(1)求的通项公式;(2)各项均为正数的等比数列中,,,求的前项和.20.已知.(1)求与的夹角;(2)求.21.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据分层抽样等比例抽样的特点,进行计算即可.【详解】根据题意,可得,解得.故选:C.【点睛】本题考查分层抽样的等比例抽取的性质,属基础题.2、C【解析】

①,为“保比差数列函数”;②,为“保比差数列函数”;③不是定值,不是“保比差数列函数”;④,是“保比差数列函数”,故选C.考点:等差数列的判定及对数运算公式点评:数列,若有是定值常数,则是等差数列3、C【解析】

根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.4、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,联立,解得A(2,3),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×2﹣3=1.故选:C.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.5、C【解析】

由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值6、C【解析】画出函数的图象,如图,由图可知函数的图象关于对称,解方程方程,得或,时有三个根,,时有两个根,所以关于的方程共有五个根,,,故选C.【方法点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.7、B【解析】

根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【点睛】本题考查了等比数列前项和的性质,考查了数学运算能力.8、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。9、A【解析】试题分析:由题意得,直线与直线垂直,则,解得或,所以“”是“直线与直线垂直”的充分不必要条件,故选A.考点:两条直线的位置关系及充分不必要条件的判定.10、C【解析】

由数列的递推式和等比数列的定义可得数列{an}为首项为p【详解】Sn+an=2pn⩾2时,Sn-1+a相减可得2an-an-1=0,即有数列由①可得p=1时,S5|a|a5|+|由①可得am·a可得p=1故选:C.【点睛】本题考查数列的递推式的运用,以及等比数列的定义和通项公式、求和公式的运用,考查化简整理的运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.12、【解析】

根据和时的单调性可确定最大值和最小值,进而构造方程求得结果.【详解】当时,在上单调递增,,解得:或(舍)当时,在上单调递减,,解得:(舍)或(舍)综上所述:故答案为:【点睛】本题考查利用函数最值求解参数值的问题,关键是能够根据指数函数得单调性确定最值点.13、偶【解析】

利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.14、【解析】

由EC垂直Rt△ABC的两条直角边,可知EC⊥面ABC,再根据D是斜边AB的中点,AC=6,BC=8,可求得CD的长,根据勾股定理可求得DE的长.【详解】如图,EC⊥面ABC,而CD⊂面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜边AB的中点,∴CD=5,ED1.故答案为1.【点睛】本题主要考查了线面垂直的判定和性质定理,利用勾股定理求线段的长度,考查了空间想象能力和推理论证能力,属于基础题.15、【解析】

∵当时,仍是数列中的项,而数列是递增数列,∴,所以必有,,利用累加法可得:,故,得,故答案为.点睛:本题主要考查了数列的求和,解题的关键是单调性的利用以及累加法的运用,有一定难度;根据题中条件从中任取两项,当时,仍是数列中的项,结合递增数列必有,,利用累加法可得结果.16、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先求出,再利用正弦定理可得结果;(2)由求出,再利用余弦定理解三角形.【详解】(1)∵,且,∴,由正弦定理得,∴;(2)∵,∴,∴,由余弦定理得,∴.【点睛】本题考查正弦余弦定理解三角形,是基础题.18、(1);(2)【解析】

(1)利用等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得数列的通项公式.(2)先求得的表达式,利用裂项求和法求得,解不等式求得的取值范围.【详解】解:(1)∵成等差数列,得,∵等比数列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【点睛】本小题主要考查等差中项的性质,考查等比数列基本量的计算,考查裂项求和法,考查不等式的解法,属于中档题.19、(1);(2).【解析】试题分析:(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通项公式;(2)设各项均为正数的等比数列的公比为q(q>0),利用等比数列的通项公式可求首项及公比q,代入等比数列的前n项和公式可求Tn.试题解析:(1)设等差数列{an}的公差为d,则由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)设等比数列{bn}的公比为q,则由已知得q+q2=a4,∵a4=6∴解得:q=2或q=-3.∵等比数列{bn}的各项均为正数,∴q=2.∴{bn}的前n项和Tn===20、(1);(2).【解析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【详解】(1)因为,所以,因为,因为,所以.(2).【点睛】本题考查数量积的运算及其变形运用,特别注意之间关系的运用与转化,考查基本运算能力.21、(1)见解析;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论