版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港市灌南县第二中学2026届数学高一下期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,为的中点,,则()A. B. C.3 D.-32.直线x﹣y+2=0与圆x2+(y﹣1)2=4的位置关系是()A.相交 B.相切 C.相离 D.不确定3.角的终边在直线上,则()A. B. C. D.4.已知各项均为正数的数列的前项和为,且若对任意的,恒成立,则实数的取值范围为()A. B. C. D.5.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.206.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.97.已知函数在区间上恒成立,则实数的最小值是()A. B. C. D.8.在正项等比数列中,,为方程的两根,则()A.9 B.27 C.64 D.819.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.13010.“结绳计数”是远古时期人类智慧的结晶,即人们通过在绳子上打结来记录数量.如图所示的是一位农民记录自己采摘果实的个数.在从右向左依次排列的不同绳子上打结,满四进一.根据图示可知,农民采摘的果实的个数是()A.493 B.383 C.183 D.123二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若向量与垂直,则__________.12.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则13.已知x,y满足,则的最大值为________.14.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.15.若等比数列的各项均为正数,且,则等于__________.16.已知正实数x,y满足2x+y=2,则xy的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数的图象如图所示(1)求函数的解析式;(2)写出函数的单调递增区间(3)设不相等的实数,,且,求的值.18.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.19.中,角A,B,C所对边分别是a、b、c,且.(1)求的值;(2)若,求面积的最大值.20.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.21.求函数的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
本题中、长度已知,故可以将、作为基底,将向量用基底表示,从而解决问题.【详解】解:在中,因为为的中点,所以,故选A【点睛】向量数量积问题常见解题方法有1.基底法,2.坐标法.基底法首先要选择两个不共线向量作为基向量,然后将其余向量向基向量转化,然后根据数量积公式进行计算;坐标法则要建立直角坐标系,然后将向量用坐标表示,进而运用向量坐标的运算规则进行计算.2、A【解析】
求得圆心到直线的距离,然后和圆的半径比较大小,从而判定两者位置关系,得到答案.【详解】由题意,可得圆心到直线的距离为,所以直线与圆相交.故选:A.【点睛】本题主要考查了直线与圆的位置关系判定,其中解答中熟记直线与圆的位置关系的判定方法是解答的关键,着重考查了推理与计算能力,属于基础题.3、C【解析】
先由直线的斜率得出,再利用诱导公式将分式化为弦的一次分式齐次式,并在分子分母中同时除以,利用弦化切的思想求出所求代数式的值.【详解】角的终边在直线上,,则,故选C.【点睛】本题考查诱导公式化简求值,考查弦化切思想的应用,弦化切一般适用于以下两个方面:(1)分式为角弦的次分式齐次式,在分子分母中同时除以,可以弦化切;(2)代数式为角的二次整式,先除以,转化为角弦的二次分式其次式,然后在分子分母中同时除以,可以实现弦化切.4、C【解析】
由得到an=n,任意的,恒成立等价于,利用作差法求出的最小值即可.【详解】当n=1时,,又∴∵an+12=2Sn+n+1,∴当n≥2时,an2=2Sn﹣1+n,两式相减可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵数列{an}是各项均为正数的数列,∴an+1=an+1,即an+1﹣an=1,显然n=1时,适合上式∴数列{an}是等差数列,首项为1,公差为1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立记,,∴为单调增数列,即的最小值为∴,即故选C【点睛】已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.5、B【解析】
根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项7、D【解析】
直接利用三角函数关系式的恒等变换,把函数的关系式变形为正弦型函数,进一步利用恒成立问题的应用求出结果.【详解】函数,由因为,所以,即,当时,函数的最大值为,由于在区间上恒成立,故,实数的最小值是.故选:D【点睛】本题考查了两角和的余弦公式、辅助角公式以及三角函数的最值,需熟记公式与三角函数的性质,同时考查了不等式恒成立问题,属于基出题8、B【解析】
由韦达定理得,再利用等比数列的性质求得结果.【详解】由已知得是正项等比数列本题正确选项:【点睛】本题考查等比数列的三项之积的求法,关键是对等比数列的性质进行合理运用,属于基础题.9、C【解析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.10、C【解析】
根据题意将四进制数转化为十进制数即可.【详解】根据题干知满四进一,则表示四进制数,将四进制数转化为十进制数,得到故答案为:C.【点睛】本题以数学文化为载体,考查了进位制等基础知识,注意运用四进制转化为十进制数,考查运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,所以,解得.12、15【解析】
由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【点睛】余弦定理一定要熟记两种形式:(1)a2=b2+13、6【解析】
作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、【解析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【详解】当时,符合,当时,符合,【点睛】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。15、50【解析】由题意可得,=,填50.16、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3);【解析】
(1)根据函数的最值可得,周期可得,代入最高点的坐标可得,从而可得解析式;(2)利用正弦函数的递增区间可解得;(3)利用在内的解就是和,即可得到结果.【详解】(1)由函数的图象可得,又因为函数的周期,所以,因为函数的图象经过点,即,所以,即,所以.(2)由,可得,可得函数的单调递增区间为:,(3)因为,所以,又因为可得,所以或,解得或,、因为且,,所以.【点睛】本题考查了由图象求解析式,考查了正弦函数的递增区间,考查了由函数值求角,属于中档题.18、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解析】
(Ⅰ)利用方差的公式,求得S2A>S2B,从而在平均数相同的情况下,B的波动较小,由此得到B的成绩好一些;(Ⅱ)从图中折线趋势可知尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,从而派A去参赛较合适.【详解】(Ⅰ)由题意,根据表中的数据,利用方差的计算公式,可得S2B∴S2A>S2B,∴在平均数相同的情况下,B的波动较小,∴B的成绩好些.(Ⅱ)从图中折线趋势可知:尽管A的成绩前面起伏大,但后来逐渐稳定,误差小,预测A的潜力大,∴派A去参赛较合适.【点睛】本题主要考查了方差的求法及其应用,同时考查了折线图、方差的性质等基础知识.19、(1);(2)【解析】
(1)将化简代入数据得到答案.(2)利用余弦定理和均值不等式计算,代入面积公式得到答案.【详解】;(2)由,可得,由余弦定理可得,即有,当且仅当,取得等号.则面积为.即有时,的面积取得最大值.【点睛】本题考查了三角恒等变换,余弦定理,面积公式,均值不等式,属于常
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论