版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届天津市蓟州区马伸桥中学高一下数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.2.已知向量,则与的夹角为()A. B. C. D.3..设、是关于x的方程的两个不相等的实数根,那么过两点,的直线与圆的位置关系是()A.相离. B.相切. C.相交. D.随m的变化而变化.4.设、满足约束条件,则的最大值为()A. B.C. D.5.一元二次不等式的解集为()A. B.C. D.6.设是等比数列,有下列四个命题:①是等比数列;②是等比数列;③是等比数列;④是等差数列.其中正确命题的个数是()A. B. C. D.7.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为:A.100 B.80 C.60 D.408.在中,已知a,b,c分别为,,所对的边,且a,b,c成等差数列,,,则()A. B. C. D.9.设,则比多了()项A. B. C. D.10.向量,,若,则()A.5 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在上,满足的的取值范围是______.12.已知等比数列的公比为2,前n项和为,则=______.13.在数列中,,,则__________.14.已知两个数k+9和6-k的等比中项是2k,则k=________.15.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.16.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北的方向上,仰角为,行驶4km后到达B处,测得此山顶在西偏北的方向上.(1)求此山的高度(单位:km);(2)设汽车行驶过程中仰望山顶D的最大仰角为,求.18.某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.19.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.20.在凸四边形中,.(1)若,,,求的大小.(2)若,且,求四边形的面积.21.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.2、D【解析】
根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.3、D【解析】直线AB的方程为.即,所以直线AB的方程为,因为,所以,所以,所以直线AB与圆可能相交,也可能相切,也可能相离.4、C【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.5、C【解析】
根据一元二次不等式的解法,即可求得不等式的解集,得到答案.【详解】由题意,不等式,即或,解得,即不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与计算能力,属于基础题.6、C【解析】
设,得到,,,再利用举反例的方式排除③【详解】设,则:,故是首项为,公比为的等比数列,①正确,故是首项为,公比为的等比数列,②正确取,则,不是等比数列,③错误.,故是首项为,公差为的等差数列,④正确故选:C【点睛】本题考查了等差数列,等比数列的判断,找出反例可以快速的排除选项,简化运算,是解题的关键.7、A【解析】
根据分层抽样的方法,得到高三学生抽取的人数为,即可求解,得到答案.【详解】由题意,学校高一、高二、高三的学生人数之比为2:3:5,采用分层抽样的方法抽取容量为200的样本,所以高三学生抽取的人数为人,故选A.【点睛】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的方法是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】
利用成等差数列可得,再利用余弦定理构造的结构再代入求得即可.【详解】由成等差数列可得,由余弦定理有,即,解得,即.故选:B【点睛】本题主要考查了等差中项与余弦定理的运算,需要根据题意构造与的结构代入求解.属于中档题.9、C【解析】
可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.10、A【解析】
由已知等式求出,再根据模的坐标运算计算出模.【详解】由得,解得.∴,,.故选:A.【点睛】本题考查求向量的模,考查向量的数量积,及模的坐标运算.掌握数量积和模的坐标表示是解题基础.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.12、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.13、16【解析】
依次代入即可求得结果.【详解】令,则;令,则;令,则;令,则本题正确结果:【点睛】本题考查根据数列的递推公式求解数列中的项,属于基础题.14、3【解析】由已知得(2k)2=(k+9)(6-k),k∈N*,∴k=3.15、【解析】
求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【点睛】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.16、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)km.(2)【解析】
(1)设此山高,再根据三角形中三角函数的关系以及正弦定理求解即可.(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,再计算到直线的距离即可.【详解】解:(1)设此山高,则,在中,,,.根据正弦定理得,即,解得(km).(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,所以过C作,垂足为E,连接DE.则,,,所以.【点睛】本题主要考查了解三角形在实际中的运用,需要根据题意找到对应的直角三角形中的关系,或利用正弦定理求解.属于中档题.18、(1)42;(2)78;(3)平均数为7.4,方差为2.24【解析】
(1)根据随机数表依次读取数据即可,取01~80之间的数据;(2)根据系统抽样,确定组矩,计算可得;(3)根据平均数和方差得出数据的整体关系,整体代入求解10名选手的平均数和方差.【详解】(1)根据题意读取的编号依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6个观众的编号为42;(2)若采用系统抽样,组矩为8,最小编号为06,则最大编号为6+9×8=78;(3)记选择科技类的6人成绩分别为:,选择文艺类的4人成绩分别为:,由题:,,,,所以这10名选手的平均数为方差为【点睛】此题考查统计相关知识,涉及随机数表读数,系统抽样和平均数与方差的计算,对计算公式的变形处理要求较高.19、(1)(2)存在,最小值是.【解析】
(1)利用等比中项的性质列方程,将已知条件转化为的形式列方程组,解方程组求得,由此求得数列的通项公式.(2)首先求得数列的前项和,由列不等式,解一元二次不等式求得的取值范围,由此求得的最小值.【详解】(1)设等差数列的公差为(),由题意得化简,得.因为,所以,解得所以,即数列的通项公式是().(2)由(1)可得.假设存在正整数,使得,即,即,解得或(舍).所以所求的最小值是.【点睛】本小题主要考查等比中项的性质,考查等差数列通项公式的基本量计算,考查等差数列前项和公式,考查一元二次不等式的解法,属于中档题.20、(1);(2)【解析】
(1)在中利用余弦定理可求得,从而可知,求得;在中利用正弦定理求得结果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,从而构造出关于的方程,结合和为锐角可求得;根据化简求值可得到结果.【详解】(1)连接在中,,,由余弦定理得:,则在中,由正弦定理得:,解得:(2)连接在中,由余弦定理得:又在中,由余弦定理得:,即又为锐角,则四边形面积:【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理解三角形、三角形面积公式的应用;关键是能够利用余弦定理构造出关于角的正余弦值的方程,结合同角三角函数的平方关系构造方程可求得三角函数值;易错点是忽略角的范围,造成求解错误.21、(1),;(2)真命题,证明见解析;(3).【解析】
(1)根据题意直接写出、、的值,可得出结果;(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.【详解】(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,因此,,,;(2)真命题,证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年经济法律基础知识专业练习题
- 2026年通信行业精英选拔通信企业招聘笔试模拟题
- 2026年程序员必做技能考题Java与Python编程实践
- 2026年影视制作与后期处理技能培训题库
- 2026年外语口译专业技能测试题目
- 2026年如何提高团队协作与沟通能力测试题
- 2026年市场营销专家数字营销策略与实践题集
- 2026年能源科学与技术应用题库
- 2026年市场营销策略分析市场分析师考试题目解析
- 2026年电子商务运营策略制定与实施情景模拟题
- 规划设计定点服务机构采购项目方案投标文件(技术方案)
- 2024北师大版七年级生物下册期末复习全册考点背诵提纲
- 冷冻肉类管理办法
- 房建工程项目进度管理
- 中医护理不良事件分析与改进
- 麻醉镇痛泵术后护理规范
- 爆炸危险环境电力装置设计规范2025年
- 基于用户需求的品牌视觉识别系统品牌视觉识别系统创新-洞察阐释
- 多付款协议书范本
- 护理人员职业暴露处理规范流程
- 七氟丙烷气体灭火系统安装施工方案
评论
0/150
提交评论