版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
巴彦淖尔市重点中学2026届高一下数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.2.如下图,在四棱锥中,平面ABCD,,,,则异面直线PA与BC所成角的余弦值为()A. B. C. D.3.不等式x+5(x-1)A.[-3,1C.[124.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.5.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.6.在中,角A,B,C的对边分别为a,b,c.若,则一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形7.不等式4xA.-∞,-12C.-∞,-328.若关于的方程,当时总有4个解,则可以是()A. B. C. D.9.已知,则下列4个角中与角终边相同的是()A. B. C. D.10.已知点P(,)为角的终边上一点,则()A. B.- C. D.0二、填空题:本大题共6小题,每小题5分,共30分。11.对于任意x>0,不等式3x2-2mx+12>012.已知sin+cosα=,则sin2α=__13.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.14.记为数列的前项和.若,则_______.15.如图是一个算法流程图.若输出的值为4,则输入的值为______________.16.函数,的值域是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△中,角、、所对的边分别为、、,且.(1)求的值;(2)若,求的最大值;(3)若,,为的中点,求线段的长度.18.已知向量,,,设函数.(1)求的最小正周期;(2)求在上的最大值和最小值.19.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.20.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列.(1)求数列的通项公式;(2)求数列的前项和;(3)求数列的最大值.21.已知中,,,点D在AB上,,并且.(1)求BC的长度;(2)若点E为AB中点,求CE的长度.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【点睛】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.2、B【解析】
作出异面直线PA与BC所成角,结合三角形的知识可求.【详解】取的中点,连接,如图,因为,,所以四边形是平行四边形,所以;所以或其补角是异面直线PA与BC所成角;设,则,;因为,所以;因为平面ABCD,所以,在三角形中,.故选:B.【点睛】本题主要考查异面直线所成角的求解,作出异面直线所成角,结合三角形知识可求.侧重考查直观想象的核心素养.3、D【解析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法4、A【解析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.5、B【解析】
方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【点睛】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.6、D【解析】
根据正弦定理得到,计算得到答案.【详解】,则,即.故或,即.故选:.【点睛】本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力.7、B【解析】
因式分解不等式,可直接求得其解集。【详解】∵4x2-4x-3≤0,∴【点睛】本题考查求不等式解集,属于基础题。8、D【解析】
根据函数的解析式,写出与的解析式,再判断对应方程在时解的个数.【详解】对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时有2个解,当时有3个解,当时有4个解,不符合;对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时恒有4个解,符合题意.【点睛】本题考查了函数与方程的应用问题,考查数形结合思想的运用,对综合能力的要求较高.9、C【解析】
先写出与角终边相同的角的集合,再给k取值得解.【详解】由题得与角终边相同的集合为,当k=6时,.所以与角终边相同的角为.故选C【点睛】本题主要考查终边相同的角的求法,意在考查学生对该知识的理解掌握水平.10、A【解析】
根据余弦函数的定义,可直接得出结果.【详解】因为点P(,)为角的终边上一点,则.故选A【点睛】本题主要考查三角函数的定义,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、(-∞,6)【解析】
先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12、【解析】∵,∴即,则.故答案为:.13、12【解析】
直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解析】
由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.15、-1【解析】
对的范围分类,利用流程图列方程即可得解.【详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.16、【解析】
首先根据的范围求出的范围,从而求出值域。【详解】当时,,由于反余弦函数是定义域上的减函数,且所以值域为故答案为:.【点睛】本题主要考查了复合函数值域的求法:首先求出内函数的值域再求外函数的值域。属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)由三角恒等变换的公式,化简,代入即可求解.(2)在中,由余弦定理,结合基本不等式,求得,即可得到答案.(3)设,在中,由余弦定理,求得,分别在和中,利用余弦定理,列出方程,即可求解.【详解】(1)由题意,在中,,则又由.(2)在中,由余弦定理可得,即,可得,当且仅当等号成立,所以的最大值为.(3)设,如图所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因为,所以,由①+②,可得,即,解得,即.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.18、(1)(2)时,取最小值;时,取最大值1.【解析】
试题分析:(1)根据向量数量积、二倍角公式及配角公式得,再根据正弦函数性质得.(2)先根据得,,再根据正弦函数性质得最大值和最小值.试题解析:(1),最小正周期为.(2)当时,,由图象可知时单调递增,时单调递减,所以当,即时,取最小值;当,即时,取最大值1.19、(1)证明见解析;(2)【解析】
(1)如图所示,为中点,连接,证明为平行四边形得到答案.(2)分别以为轴建立直角坐标系,平面的法向量为,计算向量夹角得到答案.【详解】(1)如图所示,为中点,连接.为中点,N为PC的中点,故,,,故,且,故为平行四边形.故,平面,故平面PAB.(2)中点为,,故,故,底面ABCD,故,.分别以为轴建立直角坐标系,则,,,,.设平面的法向量为,则,即,取得到,故,故直线AN与平面PMN所成角的余弦值为.【点睛】本题考查了线面平行,线面夹角,意在考查学生的空间想象能力和计算能力.20、(1)(2)(3)【解析】
(1)先根据题设知,再利用求得,验证符合,最后答案可得.
(2)由题设可知,把代入,然后用错位相减法求和;(3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得最大值..【详解】解:(1)由已知得:,∵当时,,又当时,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即为最大,故最大值为.【点睛】本题主要考查了数列的递推式解决数列的通项公式和求和问题,考查数列最大项的求解,是中档题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年管理学经典问题与答案解析
- 2026年护士执业考试护理技能操作题库及答案解析
- 2026年法学专业知识法律案例分析与法律文书写作题集
- 2026年工业产品设计制造及技术创新考题
- 2026年云计算与网络安全工程师技能进阶练习题集
- 2026年国家一级建造师执业资格考试备考习题
- 徐州市贾汪区法院系统招聘考试真题2025
- 2026年心理学考研人格与社会心理学试题集
- 2026年大学英语四六级阅读理解试题集
- 2026年人工智能技术应用及开发进阶测试题
- 2026年上海市宝山区初三上学期一模物理试卷和答案及评分标准
- 丁华野教授:上卷:幼年性纤维腺瘤与叶状肿瘤
- 输液导轨施工方案
- 货运行业安全责任意识培训计划
- 《肿瘤治疗相关心血管毒性中医防治指南》
- 《电力电子技术》复习资料
- 工作作风存在问题及整改措施
- JC╱T 529-2000 平板玻璃用硅质原料
- 肺结节科普知识宣教
- 脾胃论与现代医学的契合医学课件
- 钢结构安装合同
评论
0/150
提交评论