江苏省南京十三中、中华中学2026届高一下数学期末检测模拟试题含解析_第1页
江苏省南京十三中、中华中学2026届高一下数学期末检测模拟试题含解析_第2页
江苏省南京十三中、中华中学2026届高一下数学期末检测模拟试题含解析_第3页
江苏省南京十三中、中华中学2026届高一下数学期末检测模拟试题含解析_第4页
江苏省南京十三中、中华中学2026届高一下数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京十三中、中华中学2026届高一下数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形2.已知向量,,若,则与的夹角为()A. B. C. D.3.已知数列满足,,,则的值为()A.12 B.15 C.39 D.424.《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为()A.12平方米 B.16平方米 C.20平方米 D.24平方米5.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)6.若是一个圆的方程,则实数的取值范围是()A. B.C. D.7.已知,,则等于()A. B. C. D.8.若直线与圆相切,则()A. B. C. D.9.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.10.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升;12.已知,,则______.13.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.14.设,其中,则的值为________.15.已知数列的前n项和,则___________.16.已知呈线性相关的变量,之间的关系如下表所示:由表中数据,得到线性回归方程,由此估计当为时,的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.18.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为、高为的等腰三角形,侧视图是一个底边长为、高为的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.19.如图,在四棱锥中,平面平面,,且,.(Ⅰ)求证:;(Ⅱ)若为的中点,求证:平面.20.如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F分别为AC,BP中点.(1)求证:EF∥平面PCD;(2)求直线DP与平面ABCD所成角的正弦值.21.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.2、D【解析】∵,,⊥,∴,解得.∴.∴,又.设向量与的夹角为,则.又,∴.选D.3、B【解析】

根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.4、C【解析】

在中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面积=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故选:C【点睛】本题考查扇形的面积公式,考查数学阅读能力和数学运算能力,属于中档题.5、A【解析】

利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【点睛】本题主要考查直线的斜率公式,属于基础题.6、C【解析】

根据即可求出结果.【详解】据题意,得,所以.【点睛】本题考查圆的一般方程,属于基础题型.7、D【解析】

通过化简可得,再根据,可得,利用同角三角函数可得,则答案可得.【详解】解:,又,得,即,又,且,解得,,故选:D.【点睛】本题考查三角恒等变形的化简和求值,是中档题.8、C【解析】

利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.9、A【解析】

直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.10、C【解析】

先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.12、【解析】

直接利用二倍角公式,即可得到本题答案.【详解】因为,所以,得,由,所以.故答案为:【点睛】本题主要考查利用二倍角公式求值,属基础题.13、乙;【解析】

一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【点睛】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.14、【解析】

由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.15、17【解析】

根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.16、【解析】由表格得,又线性回归直线过点,则,即,令,得.点睛:本题考查线性回归方程的求法和应用;求线性回归方程是常考的基础题型,其主要考查线性回归方程一定经过样本点的中心,一定要注意这一点,如本题中利用线性回归直线过中心点求出的值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】

(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.18、(1)1;(2)40+24【解析】

由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.【详解】解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,如图所示.(1)几何体的体积为V•S矩形•h6×8×4=1.(2)正侧面及相对侧面底边上的高为:h12.左、右侧面的底边上的高为:h24.故几何体的侧面面积为:S=2×(8×26×4)=40+24.19、(Ⅰ)见解析;(Ⅱ)见解析【解析】

(Ⅰ)线线垂直先求线面垂直,即平面,进而可得;(Ⅱ)连接D与PC的中点F,只需证明即可.【详解】(Ⅰ)因为,所以.因为平面平面,且平面平面,所以平面.因为平面,所以.(Ⅱ)证明:取中点,连接,.因为为中点,所以,且.因为,且,所以,且,所以四边形为平行四边形.所以.因为平面,平面,所以平面.【点睛】此题考查立体几何证明,线线垂直一般通过线面垂直证明,线面平行只需在面内找到一个线与已知线平行即可,题目中出现中点一般也要在找其他中点连接,属于较易题目.20、(1)见证明;(2)【解析】

(1)根据EF是△BDP的中位线可知EF∥DP,即可利用线线平行得出线面平行;(2)取AB中点O,连接PO,DO,可证明∠PDO为DP与平面ABCD所成角,在Rt△DOP中求解即可.【详解】(1)因为E为AC中点,所以DB与AC交于点E.因为E,F分别为AC,BP中点,所以EF是△BDP的中位线,所以EF∥DP.又DP⊂平面PCD,EF⊄平面PCD,所以EF∥平面PCD.(2)取AB中点O,连接PO,DO∵△PAB为正三角形,∴PO⊥AB,又∵平面ABCD⊥平面PAB∴PO⊥平面ABCD,∴DP在平面ABCD内的射影为DO,∠PDO为DP与平面ABCD所成角,在Rt△DOP中,sin∠PDO=,∴直线DP与平面ABCD所成角的正弦值为【点睛】本题主要考查了线面平行的证明,线面角的求法,属于中档题.21、(1);(2)证明见解析,;(3)或.【解析】

(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论