山西省大同铁路第一中学2026届数学高一下期末检测模拟试题含解析_第1页
山西省大同铁路第一中学2026届数学高一下期末检测模拟试题含解析_第2页
山西省大同铁路第一中学2026届数学高一下期末检测模拟试题含解析_第3页
山西省大同铁路第一中学2026届数学高一下期末检测模拟试题含解析_第4页
山西省大同铁路第一中学2026届数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同铁路第一中学2026届数学高一下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形2.已知正项数列,若点在函数的图像上,则()A.12 B.13 C.14 D.163.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.过点的直线的斜率为,则等于()A. B.10 C.2 D.46.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.137.已知为递增等比数列,则()A. B.5 C.6 D.8.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.9.若函数,又,,且的最小值为,则正数的值是()A. B. C. D.10.数列,,,,,,的一个通项公式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若与共线,则实数________.12.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.13.过点,且与直线垂直的直线方程为.14.方程的解为______.15.某程序框图如图所示,则该程序运行后输出的S的值为________.16.记为数列的前项和.若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列{bn}的前n项和,n∈N*.(1)求数列{bn}的通项公式;(2)记,求数列{cn}的前n项和Sn;(3)在(2)的条件下,记,若对任意正整数n,不等式恒成立,求整数m的最大值.18.如图所示,在四棱锥中,底面是棱长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)求二面角的正切值.19.已知函数,其中.(1)当时,求的最小值;(2)设函数恰有两个零点,且,求的取值范围.20.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.21.已知函数.(1)求的最小正周期;(2)当时,求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;2、A【解析】

由已知点在函数图象上求出通项公式,得,由对数的定义计算.【详解】由题意,,∴,∴.故选:A.【点睛】本题考查数列的通项公式,考查对数的运算.属于基础题.3、D【解析】

分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.4、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质5、B【解析】

直接应用斜率公式,解方程即可求出的值.【详解】因为过点的直线的斜率为,所以有,故本题选B.【点睛】本题考查了直线斜率公式,考查了数学运算能力.6、C【解析】

由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.7、D【解析】

设数列的公比为,根据等比数列的性质,得,又由,求得,进而可求解的值,得到答案.【详解】根据题意,等比数列中,设其公比为,因为,则有,又由,且,解得,所以,所以,故选D.【点睛】本题主要考查了等比数列的通项公式和等比数列的性质的应用,其中解答中熟练应用等比数列的性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】

模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.9、D【解析】,由,得,,由,得,则,当时,取得最小值,则,解得,故选D.10、C【解析】

首先注意到数列的奇数项为负,偶数项为正,其次数列各项绝对值构成一个以1为首项,以2为公差的等差数列,从而易求出其通项公式.【详解】∵数列{an}各项值为,,,,,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|an|=2n﹣1又∵数列的奇数项为负,偶数项为正,∴an=(﹣1)n(2n﹣1).故选:C.【点睛】本题给出数列的前几项,猜想数列的通项,挖掘其规律是关键.解题时应注意数列的奇数项为负,偶数项为正,否则会错.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据平面向量的共线定理与坐标表示,列方程求出x的值.【详解】向量(3,﹣1),(x,2),若与共线,则3×2﹣(﹣1)•x=0,解得x=﹣1.故答案为﹣1.【点睛】本题考查了平面向量的共线定理与坐标表示的应用问题,是基础题.12、【解析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径

∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.13、【解析】

直线垂直表示斜率乘积为-1,所以可得新直线斜率,代入点即可.【详解】直线的斜率等于-1,所以与之垂直直线斜率,再通过点斜式直线方程:,即.【点睛】此题考查直线垂直,直线垂直表示两直线斜率之积为-1,属于简单题目.14、或【解析】

由指数函数的性质得,由此能求出结果.【详解】方程,,或,解得或.故答案为或.【点睛】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.15、1【解析】

根据程序框图,依次计算运行结果,发现输出的S值周期变化,利用终止运行的条件判断即可求解【详解】由程序框图得:S=1,k=1;第一次运行S=1第二次运行S=第三次运行S=1当k=2020,程序运行了2019次,2019=4×504+3,故S的值为1故答案为1【点睛】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题16、【解析】

由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)bn=3n﹣2,n∈N*.(2);(3)最大值为1.【解析】

(1)利用,求得数列的通项公式.(2)利用裂项求和法求得数列的前项和.(3)由(2)求得的表达式,记不等式左边为,利用差比较法判断出的单调性,进而求得的最小值,由此列不等式求得的取值范围,进而求得整数的最大值.【详解】(1)∵数列{bn}的前n项和,n∈N*.∴①当n=1时,b1=T1=1;②当n≥2时,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;设f(n);则f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值为f(1);∵对任意正整数n,不等式恒成立,∴恒成立,即m<12;故整数m的最大值为1.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列单调性的判断方法,考查不等式恒成立问题的求解,属于中档题.18、(1)见证明;(2)【解析】

(1)取PD中点G,可证EFGA是平行四边形,从而,得证线面平行;(2)取AD中点O,连结PO,可得面,连交于,可证是二面角的平面角,再在中求解即得.【详解】(1)证明:取PD中点G,连结为的中位线,且,又且,且,∴EFGA是平行四边形,则,又面,面,面;(2)解:取AD中点O,连结PO,∵面面,为正三角形,面,且,连交于,可得,,则,即.连,又,可得平面,则,即是二面角的平面角,在中,∴,即二面角的正切值为.【点睛】本题考查线面平行证明,考查求二面角.求二面角的步骤是一作二证三计算.即先作出二面角的平面角,然后证明此角是要求的二面角的平面角,最后在三角形中计算.19、(1);(2)【解析】

(1)当时,利用指数函数和二次函数的图象与性质,得到函数的单调性,即可求得函数的最小值;(2)分段讨论讨论函数在相应的区间内的根的个数,函数在时,至多有一个零点,函数在时,可能仅有一个零点,可能有两个零点,分别求出的取值范围,可得解.【详解】(1)当时,函数,当时,,由指数函数的性质,可得函数在上为增函数,且;当时,,由二次函数的性质,可得函数在上为减函数,在上为增函数,又由函数,当时,函数取得最小值为;故当时,最小值为.(2)因为函数恰有两个零点,所以(ⅰ)当时,函数有一个零点,令得,因为时,,所以时,函数有一个零点,设零点为且,此时需函数在时也恰有一个零点,令,即,得,令,设,,因为,所以,,,当时,,所以,即,所以在上单调递增;当时,,所以,即,所以在上单调递减;而当时,,又时,,所以要使在时恰有一个零点,则需,要使函数恰有两个零点,且,设在时的零点为,则需,而当时,,所以当时,函数恰有两个零点,并且满足;(ⅱ)若当时,函数没有零点,函数在恰有两个零点,且满足,也符合题意,而由(ⅰ)可得,要使当时,函数没有零点,则,要使函数在恰有两个零点,则,但不能满足,所以没有的范围满足当时,函数没有零点,函数在恰有两个零点,且满足,综上可得:实数的取值范围为.故得解.【点睛】本题主要考查了指数函数与二次函数的图象与性质的应用,以及函数与方程,函数的零点问题的综合应用,属于难度题,关键在于分析分段函数在相应的区间内的单调性,以及其图像趋势,可运用数形结合方便求解,注意在讨论二次函数的根的情况时的定义域对其的影响.20、(1);(2).【解析】

(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【点睛】本题考查正弦型函数的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论