版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海杨浦高级中学高一下数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是边长为4的等边三角形,为平面内一点,则的最小值是()A. B. C. D.2.已知等差数列的前项和为,首项,若,则当取最大值时,的值为()A. B. C. D.3.若a、b、c>0且a(a+b+c)+bc=4-2,则2a+b+c的最小值为()A.-1 B.+1C.2+2 D.2-24.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定5.《九章算术》卷第六《均输》中,提到如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其大致意思是说,若九节竹每节的容量依次成等差数列,下三节容量四升,上四节容量三升,则中间两节的容量各是()A.升、升 B.升、升C.升、升 D.升、升6.已知向量是单位向量,=(3,4),且在方向上的投影为,則A.36 B.21 C.9 D.67.在中,角,,所对的边分别为,,,若,,,则的值为()A. B. C. D.8.在空间中,可以确定一个平面的条件是()A.一条直线B.不共线的三个点C.任意的三个点D.两条直线9.若,则A. B. C. D.10.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则的取值范围是____12.方程在区间上的解为___________.13.在数列{}中,,则____.14.若方程表示圆,则实数的取值范围是______.15.若,则__________.(结果用反三角函数表示)16.数列满足,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的值;(2)求的单调递增区间.18.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.19.已知向量,向量,向量,记与的夹角为.(Ⅰ)求(Ⅱ)求向量与向量的夹角的取值范围.20.若是的一个内角,且,求的值.21.若数列中存在三项,按一定次序排列构成等比数列,则称为“等比源数列”。(1)在无穷数列中,,,求数列的通项公式;(2)在(1)的结论下,试判断数列是否为“等比源数列”,并证明你的结论;(3)已知无穷数列为等差数列,且,(),求证:数列为“等比源数列”.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解.【详解】由题意,以中点为坐标原点,建立如图所示的坐标系,则,设,则,所以,所以当时,取得最小值为,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】
设等差数列的公差为,,由,可得,令求出正整数的最大值,即可得出取得最大值时对应的的值.【详解】设等差数列的公差为,由,得,可得,令,,可得,解得.因此,最大.故选:B.【点睛】本题考查等差数列前项和的最值,一般利用二次函数的基本性质求解,也可由数列项的符号求出正整数的最大值来求解,考查计算能力,属于中等题.3、D【解析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(当且仅当a+c=b+a,即b=c时取“=”),∴2a+b+c≥2=2(-1)=2-2.故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误4、C【解析】
延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【点睛】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.5、D【解析】
由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,an,公差为d,利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出中间一节的容量.【详解】由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,a9,公差为d,即=4,=3,∴=4,=3,解得,,∴中间两节的容量,,故选:D.【点睛】本题考查等差数列的通项公式,利用等差数列的通项公式列出方程组,解出首项与公差即可,考查计算能力,属于基础题.6、D【解析】
根据公式把模转化为数量积,展开后再根据和已知条件计算.【详解】因为在方向上的投影为,所以,.故选D.【点睛】本题主要考查向量模有关的计算,常用公式有,.7、B【解析】
先利用面积公式得到,再利用余弦定理得到【详解】余弦定理:故选B【点睛】本题考查了面积公式和余弦定理,意在考查学生的计算能力.8、B【解析】试题分析:根据平面的基本性质及推论,即确定平面的几何条件,即可知道答案.解:对于A.过一条直线可以有无数个平面,故错;对于C.过共线的三个点可以有无数个平面,故错;对于D.过异面的两条直线不能确定平面,故错;由平面的基本性质及推论知B正确.故选B.考点:平面的基本性质及推论.9、B【解析】
分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.10、C【解析】
根据三视图还原直观图,根据长度关系计算表面积得到答案.【详解】根据三视图还原直观图,如图所示:几何体的表面积为:故答案选C【点睛】本题考查了三视图,将三视图转化为直观图是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【点睛】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.13、1【解析】
直接利用等比数列的通项公式得答案.【详解】解:在等比数列中,由,公比,得.故答案为:1.【点睛】本题考查等比数列的通项公式,是基础题.14、.【解析】
把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.15、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.16、2【解析】
利用递推公式求解即可.【详解】由题得.故答案为2【点睛】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,(1)将代入,利用特殊角的三角函数可得的值;(2)利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:(Ⅰ)===(Ⅱ)由题可得,函数的单调递增区间是点睛:本题主要考查三角函数的单调性、三角函数的恒等变换,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.18、(1);(2),【解析】
(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【点睛】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由向量夹角公式可求,再由三角函数的诱导公式,化简得原式,利用三角函数的基本关系式,即可求解.(Ⅱ)作出图象,结合直角中,求得,进而得到,,即可求得向量与向量的夹角的取值范围.【详解】(Ⅰ)由向量夹角公式可求,又由,因为,所以,故原式=.(Ⅱ)如图所示,向量的终点在以点为圆心、半径为的圆上,是圆的两条切线,切点分别为,在直角中,,可得,即所以,因为,所以,,所以向量与向量的夹角的取值范围是.【点睛】本题主要考查了向量的数量积的运算公式,向量的夹角公式的应用,以及诱导公式的化简求值问题,其中解答中熟记向量的夹角公式和向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.20、【解析】
本题首先可根据是的一个内角以及得出和,然后对进行平方并化简可得,最后结合即可得出结果.【详解】因为是的一个内角,所以,,因为,所以,,所以,所以.【点睛】本题考查同角三角函数关系的应用,考查的公式为,在运算的过程中一定要注意角的取值范围,考查推理能力,是简单题.21、(1);(2)不是,证明见解析;(3)证明见解析.【解析】
(1)由,可得出,则数列为等比数列,然后利用等比数列的通项公式可间接求出;(2)假设数列为“等比源数列”,则此数列中存在三项成等比数列,可得出,展开后得出,然后利用数的奇偶性即可得出结论;(3)设等差数列的公差为,假设存在三项使得,展开得出,从而可得知,当,时,原命题成立.【详解】(1),得,即,且.所以,数列是以为首项,以为公比的等比数列,则,因此,;(2)数列不是“等比源数列”,下面用反证法来证明.假设数列是“等比源数列”,则存在三项、、,设.由于数列为单调递增的正项数列,则,所以.得,化简得,等式两边同时除以得,,且、、,则,,,,则为偶数,为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 短期培训总结报告
- 2026年编程基础Python语言编程认证题库
- 2026年国际关系与外交实务进阶题库
- 2026年经济分析基础试题经济指标解读与运用标准应用题
- 2026年生物化学实验技术应用与操作测试
- 2026年音乐教师资格考试模拟题含音乐理论及教学技能
- 2026年信息安全管理基础知识学习与实际操作技巧题库
- 2026年汽车维修技师等级考试题库技术实务与故障诊断
- 2026年机械工程设计与材料性能强化训练试题
- 2026年通信技术与现代信息网络构建实践试题
- 2026年金融科技支付创新报告及全球市场应用分析报告
- 尼帕病毒病防治实战
- 2026春译林版八下英语单词默写【中译英】
- 2025至2030心理咨询行业市场发展分析与发展前景及有效策略与实施路径评估报告
- 2025年农业现代化机械化服务项目可行性研究报告
- 初中英语单词表2182个(带音标)
- 老年慢性病管理新进展
- 医患沟通学课件
- 钢结构施工方案模板及范例
- 胶带机保洁管理办法
- 2025年国防科工局面试模拟题库解析
评论
0/150
提交评论