版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届陕西省咸阳市武功县高一数学第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是等差数列,且,,则()A.-5 B.-11 C.-12 D.32.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交3.在平面直角坐标系中,过点的直线与轴的正半轴,轴的正半轴分别交于两点,则的面积的最小值为()A.1 B.2 C.3 D.44.已知是等差数列的前项和,公差,,若成等比数列,则的最小值为()A. B.2 C. D.5.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,6.已知角的终边经过点,则的值是()A. B. C. D.7.下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.8.若不等式对实数恒成立,则实数的取值范围()A.或 B.C. D.9.已知都是正数,且,则的最小值等于A. B.C. D.10.已知向量,,则与夹角的大小为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设等差数列的前项和为,若,,则______.12.已知数列中,其前项和为,,则_____.13.已知,,若,则实数的值为__________.14.设函数的最小值为,则的取值范围是___________.15.某市三所学校有高三文科学生分别为500人,400人,300人,在三月进行全市联考后,准备用分层抽样的方法从三所高三文科学生中抽取容量为24的样本,进行成绩分析,则应从校高三文科学生中抽取_____________人.16.已知等比数列中,,,则该等比数列的公比的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为.且.(1)求的值;(2)若,求的面积.18.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.19.已知圆:.(1)过的直线与圆:交于,两点,若,求直线的方程;(2)过的直线与圆:交于,两点,直接写出面积取值范围;(3)已知,,圆上是否存在点,使得,请说明理由.20.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.21.已知函数,求其定义域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由是等差数列,求得,则可求【详解】∵是等差数列,设,∴故故选:B【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题2、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D3、B【解析】
利用直线的方程过点分别与轴的正半轴,轴的正半轴分别交于两点,可得:,,结合基本不等式的性质即可得出.【详解】在平面直角坐标系中,过点的直线与轴的正半轴,轴的正半轴分别交于两点,且构成,所以,直线斜率一定存在,设,,:,,则有:,,解得,当且仅当:,即时,等号成立,的面积为:.故选:B【点睛】本题考查了直线的截距式方程、基本不等式求最值,注意验证等号成立的条件,属于基础题.4、A【解析】
由成等比数列可得数列的公差,再利用等差数列的前项和公式及通项公式可得为关于的式子,再利用对勾函数求最小值.【详解】∵成等比数列,∴,解得:,∴,令,令,其中的整数,∵函数在递减,在递增,∴当时,;当时,,∴.故选:A.【点睛】本题考查等差数列与等比数列的基本量运算、函数的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数,如果利用基本不等式求解,等号是取不到的.5、A【解析】
根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。6、D【解析】
首先计算出,根据三角函数定义可求得正弦值和余弦值,从而得到结果.【详解】由三角函数定义知:,,则:本题正确选项:【点睛】本题考查任意角三角函数的求解问题,属于基础题.7、D【解析】
利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称.,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D.函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.8、C【解析】
对m分m≠0和m=0两种情况讨论分析得解.【详解】由题得时,x<0,与已知不符,所以m≠0.当m≠0时,,所以.综合得m的取值范围为.故选C【点睛】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.9、C【解析】
,故选C.10、D【解析】
根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【点睛】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】
将和用首项和公差表示,解方程组,求出首项和公式,利用公式求解.【详解】设该数列的公差为,由题可知:,解得,故.故答案为:10.【点睛】本题考查由基本量计算等差数列的通项公式以及前项和,属基础题.12、1【解析】
本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。13、【解析】
利用共线向量等价条件列等式求出实数的值.【详解】,,且,,因此,,故答案为.【点睛】本题考查利用共线向量来求参数,解题时要充分利用共线向量坐标表示列等式求解,考查计算能力,属于基础题.14、.【解析】
确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,15、8【解析】
利用分层抽样中比例关系列方程可求.【详解】由已知三所学校总人数为500+400+300=1200,设从校高三文科学生中抽取x人,由分层抽样的要求及抽取样本容量为24,所以,,故答案为8.【点睛】本题考查分层抽样,考查计算求解能力,属于基本题.16、【解析】
根据等比通项公式即可求解【详解】故答案为:【点睛】本题考查等比数列公比的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.【详解】(1)因为,由正弦定理,得,∴;(2)∵,由余弦定理得,即,所以,解得或(舍去),所以【点睛】本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.18、(1);(2)【解析】
(1)由题易知边上的高过,斜率为3,可得结果.(1)求得点A的坐标可得点E的坐标,易知直线EF和直线AB的斜率一样,可得方程.【详解】(1)边上的高过,因为边上的高所在的直线与所在的直线互相垂直,故其斜率为3,方程为:(2)由题点坐标为,的中点是的一条中位线,所以,,其斜率为:,所以的斜率为所以直线的方程为:化简可得:.【点睛】本题考查了直线方程的求法,主要考查直线的点斜式方程,以及化简为一般式,属于基础题.19、(1)或;(2);(3)存在,理由见解析【解析】
求得圆的圆心和半径.(1)设出直线的方程,利用弦长、勾股定理和点到直线距离列方程,解方程求得直线的斜率,进而求得直线的方程.(2)利用三角形的面积公式列式,由此求得面积取值范围.(3)求得三角形外接圆的方程,根据圆和圆的位置关系,判断出点存在.【详解】圆心为,半径为.(1)直线有斜率,设:,圆心到直线的距离为,∵,则由,得,直线的方程为或(2)依题意可知,三角形的面积为,由于,所以,所以.(3)设三角形的外接圆圆心为(),半径为,由正弦定理得,,所以,所以圆的圆心为,所以圆的方程为,圆与圆满足圆心距:,∴圆与圆相交于两点,圆上存在两个这样的点,满足题意.【点睛】本小题主要考查直线和圆的位置关系,考查圆和圆的位置关系,考查三角形的面积公式,考查化归与转化的数学思想方法,属于中档题.20、(1),;(2).【解析】
(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年年轻人职业技能培养与实践测试题
- 2026年托福高分突破预测模拟试题集
- 2026年厨师营养餐设计与烹饪技巧分析题集
- 2026年医学类考试题库病理学基础知识及实践
- 2026年生物医学研究基础知识题目
- 2026年军事知识与国防事务试题集现代战争理论与实践
- 广西壮族自治区北海市2025-2026学年高一上学期期末教学质量检测地理(含答案)
- 2026年历年职业资格考试考点总结及答题策略
- 2026年心理咨询师技能等级考试模拟试题
- 2026年知识产权保护与维权实操题目
- T/CGCC 93-2024文化产品产权价值评估通则
- 临床用药解读-消化系统常见疾病的诊疗进展及处方审核要点
- 高中数学北师大版讲义(必修二)第05讲1.5正弦函数、余弦函数的图象与性质再认识3种常见考法归类(学生版+解析)
- 2025年物料提升机司机(建筑特殊工种)模拟考试100题及答案
- 劳动合同法全文(2024年版)
- 人教板七年级至九年级英语单词表
- 海关特殊监管区域专题政策法规汇编 2025
- 《胆囊结石伴胆囊炎》课件
- 《浙江省城市体检工作技术导则(试行)》
- 人教统编版(部编版)小学科学教材目录
- 青少年无人机课程:第一课-马上起飞
评论
0/150
提交评论