版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省绿春县二中数学高一下期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=02.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.13.sin300°的值为A. B. C. D.4.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.5.若向量满足:与的夹角为,且,则的最小值是()A.1 B. C. D.26.若是等差数列,则下列数列中也成等差数列的是()A. B. C. D.7.中,,,,则的面积等于()A. B. C.或 D.或8.在等差数列中,若,则()A.8 B.12 C.14 D.109.已知,所在平面内一点P满足,则()A. B. C. D.10.已知函数则的是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列,,,,则______.12.等比数列中,若,,则______.13.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是14.已知过两点,的直线的倾斜角是,则______.15.不论k为何实数,直线通过一个定点,这个定点的坐标是______.16.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.18.已知函数.(1)求函数的单调减区间.(2)求函数的最大值并求取得最大值时的的取值集合.(3)若,求的值.19.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤.试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:,)20.已知,与的夹角为.(1)若,求;(2)若与垂直,求.21.某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.2、B【解析】
由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.3、B【解析】
利用诱导公式化简,再求出值为.【详解】因为,故选B.【点睛】本题考查诱导公式的应用,即终边相同角的三角函数值相等及.4、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5、D【解析】
设作图,由可知点在以线段为直径的圆上,由图可知,,代入所求不等式利用圆的特征化简即可.【详解】如图,设,取线段的中点为,连接OE交圆于点D,因为即,所以点在以线段为直径的圆上(E为圆心),且,于是.故选:D【点睛】本题考查向量的线性运算,垂直向量的数量积表示,几何图形在向量运算中的应用,属于中档题.6、C【解析】
根据等差数列的定义,只需任意相邻的后一项与前一项的差为定值即可.【详解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],与n有关系,因此不是等差数列.B:==与n有关系,因此不是等差数列.C:3an+1﹣3an=3(an+1﹣an)=3d为常数,仍然为等差数列;D:当数列{an}的首项为正数、公差为负数时,{|an|}不是等差数列;故选:C【点睛】本题考查了等差数列的定义及其通项公式,考查了推理能力与计算能力,属于基础题.7、D【解析】
先根据余弦定理求AC,再根据面积公式得结果.【详解】因为,所以或2,因此的面积等于或等于,选D.【点睛】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.8、C【解析】
将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,,得解得,,所以.故选C.【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.9、D【解析】
由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.10、D【解析】
根据自变量的范围确定表达式,从里往外一步步计算即可求出.【详解】因为,所以,因为,所以==3.【点睛】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【点睛】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.12、【解析】
设的首项为,公比为,根据,列出方程组,求出和即可得解.【详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【点睛】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.13、【解析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.14、【解析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.15、(2,3)【解析】
将直线方程变形为,它表示过两直线和的交点的直线系,解方程组,得上述直线恒过定点,故答案为.【方法点睛】本题主要考查待定直线过定点问题.属于中档题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.16、10.【解析】
由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三角函数关系,考查应用两角差的余弦公式和二倍角公式求值.三角函数求值时一般要先化简再求值,这样计算可以更加简便,保证正确.18、(1).(2)最大值是2,取得最大值时的的取值集合是.(3)【解析】
(1)利用三角恒等变换化简的解析式,再利用正弦函数的单调性,求得函数的单调区间;(2)根据的解析式以及正弦函数的最值,求得函数的最大值,以及取得最大值时的的取值集合;(3)根据题设条件求得,再利用二倍角的余弦公式求的值.【详解】(1),令,解得,所以的单调递减区间为;(2)由(1)知,故的最大值为2,此时,,解得,所以的最大值是2,取得最大值时的的取值集合是;(3),即,所以,所以.【点睛】本题主要考查三角函数的恒等变换,考查正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质是答题关键,属于中档题.19、(1)见解析.(2).(3)吨.【解析】
(1)直接描点即可(2)计算出的平均数,,及,,利用公式即可求得,问题得解.(3)将代入可得,结合已知即可得解.【详解】解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)计算,,,,∴回归方程的系数为:.,∴所求线性回归方程为;(3)利用线性回归方程计算时,,则,即比技改前降低了19.65吨.【点睛】本题主要考查了线性回归方程的求法,考查计算能力,还考查了线性回归方程的应用,属于中档题.20、(1);(2)【解析】
(1)根据向量共线,对向量的夹角分类讨论,利用数量积公式即可完成求解;(2)根据向量垂直得到数量积为,再根据已知条件并借助数量积公式即可计算出的值.【详解】(1)∵,∴与的夹角为或,当时,,当时,,综上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夹角的范围是,∴【点睛】本题考查根据向量的平行、垂直求解向量的夹角以及向量数量积公式的运用,难度较易.注意共线向量的夹角为或.21、(1)0.4(2)【解析】
(1)从频率分布直方图中计算出前四组矩形面积之和,即为所求概率;(2)列举出全部的基本事件,并确定出基本事件的总数,然后从中找出事件“至少有名骑手选择方案(1)”所包含的基本事件数,最后利用古典概型的概率公式可计算出结果。【详解】(1)设事件为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于单”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁学基础知识
- 短文两篇课件《陋室铭》与
- 盗窃应急课件
- 2026年金融知识实战投资理财技能测试题
- 2026年护士执业资格考试考点解析与练习题
- 2026年高级酒店管理专业认证考试试题库
- 2026年钢琴调律师认证调音与修理实操题库
- 2026年网络与信息安全问题集
- 2026年化学基础理论及实验操作技巧题库题目
- 2026年生物遗传学与进化论专业知识题集
- 十五五地下综合管廊智能化运维管理平台建设项目建设方案
- 户外领队培训课件
- DB4228∕T 59-2021 马铃薯晚疫病田间抗性鉴定技术规程
- JJF 1218-2025标准物质研制报告编写规则
- 一次函数-经典趣题探究
- 骨科老年护理课件
- 加装电梯业主反对协议书
- 人教版(2024)七年级上册地理第1~6章共6套单元测试卷汇编(含答案)
- 物流公司消防安全管理制度
- 北魏《元桢墓志》完整版(硬笔临)
- 肺奴卡菌病课件
评论
0/150
提交评论