河南省名校2026届高一下数学期末学业水平测试试题含解析_第1页
河南省名校2026届高一下数学期末学业水平测试试题含解析_第2页
河南省名校2026届高一下数学期末学业水平测试试题含解析_第3页
河南省名校2026届高一下数学期末学业水平测试试题含解析_第4页
河南省名校2026届高一下数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省名校2026届高一下数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值为()A. B. C.3 D.22.将函数的图象向右平移个单位长度得到图象,则函数的解析式是()A. B.C. D.3.已知关于的不等式的解集为空集,则实数的取值范围是()A. B. C. D.4.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.45.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,6.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-7.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.8.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A.29 B.17 C.12 D.59.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里 B.48里 C.36里 D.24里10.设,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.实数x、y满足,则的最大值为________.12.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.13.已知数列的前n项和,则___________.14.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.15.在平行四边形中,=,边,的长分别为2,1.若,分别是边,上的点,且满足,则的取值范围是______.16.在中,角,,的对边分别为,,,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.18.如图,在平面直角坐标系xOy中,已知圆C:x2⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A,B两点,且OA=AB,求直线l的方程.19.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.20.已知,,且.(1)求函数的最小正周期;(2)若用和分别表示函数W的最大值和最小值.当时,求的值.21.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角、、所对边的长分别是、、,若,,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.2、C【解析】

由题意利用三角函数的图象变换原则,即可得出结论.【详解】由题意,将函数的图象向右平移个单位长度,可得.故选C.【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.3、C【解析】

由题意得出关于的不等式的解集为,由此得出或,在成立时求出实数的值代入不等式进行验证,由此解不等式可得出实数的取值范围.【详解】由题意知,关于的不等式的解集为.(1)当,即.当时,不等式化为,合乎题意;当时,不等式化为,即,其解集不为,不合乎题意;(2)当,即时.关于的不等式的解集为.,解得.综上可得,实数的取值范围是.故选:C.【点睛】本题考查二次不等式在上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.4、B【解析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.5、D【解析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪6、D【解析】

利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.7、D【解析】

由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.8、B【解析】

根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.9、B【解析】

根据题意得出等比数列的项数、公比和前项和,由此列方程,解方程求得首项,进而求得的值.【详解】依题意步行路程是等比数列,且,,,故,解得,故里.故选B.【点睛】本小题主要考查中国古典数学文化,考查等比数列前项和的基本量计算,属于基础题.10、A【解析】

先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据约束条件,画出可行域,将目标函数化为斜截式,找到其在轴截距的最大值,得到答案.【详解】由约束条件,画出可行域,如图所示,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最大,联立,解得,即,所以.故答案为:.【点睛】本题考查线性规划求最大值,属于简单题.12、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.13、17【解析】

根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.14、9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、【解析】

以A为原点AB为轴建立直角坐标系,表示出MN的坐标,利用向量乘法公式得到表达式,最后计算取值范围.【详解】以A为原点AB为轴建立直角坐标系平行四边形中,=,边,的长分别为2,1设则当时,有最大值5当时,有最小值2故答案为【点睛】本题考查了向量运算和向量乘法的最大最小值,通过建立直角坐标系的方法简化了技巧,是解决向量复杂问题的常用方法.16、【解析】

利用余弦定理与不等式结合的思想求解,,的关系.即可求解的值.【详解】解:根据①余弦定理②由①②可得:化简:,,,,,,此时,故得,即,.故答案为:.【点睛】本题主要考查了存在性思想,余弦定理与不等式结合的思想,界限的利用.属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)代入参数值,解二次不等式即可;(2)不等式,即,故得到1,2是方程的两实根,根据韦达定理得到数值.【详解】(1)当时,不等式即为,∴或,因此原不等式的解集为.(2)不等式,即,由题意知,且1,2是方程的两实根,因此.【点睛】这个题目考查了二次不等式的解法,以及二次函数和二次不等式的关系,考查了二次不等式的韦达定理的应用,属于基础题.18、(1)(x+3)2+(y-2)2【解析】

(1)设出圆E的标准方程为(x-a)2+(y-b)2=r2,由圆E与x轴相切,可得b=r,由圆E与圆C外切,可得两圆心距等于半径之和,由此解出(2)法一:设出A点坐标为(x0,y0),根据OA=AB,可得到点B坐标,把A、B两点坐标代入圆法二:设AB的中点为M,连结CM,CA,设出直线l的方程,由题求出CM的长,利用点到直线的距离即可得求出k值,从而得到直线l的方程【详解】⑴设圆E的标准方程为(x-a)2+(y-b)2=r2因为圆E的半径为2,与x轴相切,所以b=2因为圆E与圆C外切所以EC=3,即a由①②解得a=±3,b=2故圆E的标准方程为(x+3)2+⑵方法一;设A(因为OA=AB,所以A为OB的中点,从而B(2因为A,B都在圆C上所以x解得x0=-故直线l的方程为:y=±方法二:设AB的中点为M,连结CM,CA设AM=t,CM=d因为OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由题可知直线l的斜率一定存在,设直线l的方程为y=kx则d=2k故直线l的方程为y=±【点睛】本题考查圆的标准方程与直线方程,解题关键是设出方程,找出关系式,属于中档题。19、(1);(2)或.【解析】

(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【点睛】本题主要考查一元二次不等式的解法,考查三个二次之间的关系,考查转化与化归思想,属于基础题.20、(1);(2).【解析】

(1)根据向量数量积的计算公式和三角恒等变换公式可将化简为,进而求得函数的最小正周期;(2)由可求得的范围,进而可求得的最大值和最小值,最后得解.【详解】(1)∴;(2),,,∴当时,,当时,,∴.【点睛】本题考查向量数量积的计算公式和三角恒等变换公式,考查三角函数的单调性和周期性,考查逻辑思维能力和计算能力,属于常考题.21、(1)的增区间是,(2)【解析】

(1)利用平面向量数量积的坐标表示公式、二倍角的正弦公式、余弦二倍角的降幂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论