版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市青羊区石室中学2026届数学高一下期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个2.设偶函数定义在上,其导数为,当时,,则不等式的解集为()A. B.C. D.3.在等比数列中,,,,则等于()A. B. C. D.4.下列函数中,既是偶函数又在区间上单调递减的是(
)A. B. C. D.5.已知函数,若方程有5个解,则的取值范围是()A. B. C. D.6.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40407.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.8.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.249.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.110.若直线经过A(1,0),B(2,3)两点,则直线A.135° B.120° C.60° D.45°二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)12.若函数,的图像关于对称,则________.13.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.14.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.15.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.16.设为等差数列的前n项和,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若是公差不为0的等差数列的前n项和,且成等比数列.(1)求数列的公比.(2)若,求的通项公式.18.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.19.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.20.设等差数列满足.(1)求数列的通项公式;(2)若成等比数列,求数列的前项和.21.已知是等差数列,满足,,且数列的前n项和.(1)求数列和的通项公式;(2)令,数列的前n项和为,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
对各选项逐个论证或给出反例后可得正确的命题的个数.【详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【点睛】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.2、C【解析】构造函数,则,所以当时,,单调递减,又在定义域内为偶函数,所以在区间单调递增,单调递减,又等价于,所以解集为.故选C.点睛:本题考查导数的构造法应用.本题中,由条件构造函数,结合函数性质,可得抽象函数在区间单调递增,单调递减,结合函数草图,即可解得不等式解集.3、C【解析】
直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.4、D【解析】
利用函数的奇偶性和单调性,逐一判断各个选项中的函数的奇偶性和单调性,进而得出结论.【详解】由于函数是奇函数,不是偶函数,故排除A;由于函数是偶函数,但它在区间上单调递增,故排除B;由于函数是奇函数,不是偶函数,故排除C;由于函数是偶函数,且满足在区间上单调递减,故满足条件.故答案为:D【点睛】本题主要考查了函数的奇偶性的判定及应用,其中解答中熟记函数的奇偶性的定义和判定方法,以及基本初等函数的奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、D【解析】
利用因式分解法,求出方程的解,结合函数的性质,根据题意可以求出的取值范围.【详解】,,或,由题意可知:,由题可知:当时,有2个解且有2个解且,当时,,因为,所以函数是偶函数,当时,函数是减函数,故有,函数是偶函数,所以图象关于纵轴对称,即当时有,,所以,综上所述;的取值范围是,故本题选D.【点睛】本题考查了已知方程解的情况求参数取值问题,正确分析函数的性质,是解题的关键.6、A【解析】
根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.7、B【解析】
由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【点睛】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.8、C【解析】
根据等差数列的前n项和公式,即可求出.【详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【点睛】本题主要考查了等差数列的前n项和公式,属于中档题.9、D【解析】
根据题意,由正弦定理得,再把,,代入求解.【详解】由正弦定理,得,所以.故选:D【点睛】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.10、C【解析】
利用斜率公式求出直线AB,根据斜率值求出直线AB的倾斜角.【详解】直线AB的斜率为kAB=3-02-1【点睛】本题考查直线的倾斜角的求解,考查直线斜率公式的应用,考查计算能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、②③④【解析】
①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.12、【解析】
特殊值法:由的对称轴是,所以即可算出【详解】由题意得是三角函数所以【点睛】本题主要考查了三角函数的性质,需要记忆三角函数的基本性质:单调性、对称轴、周期、定义域、最值、对称中心等。根据对称性取特殊值法解决本题是关键。属于中等题。13、【解析】
先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、.【解析】
根据等积法可得∴15、1【解析】
由表格得,即样本中心点的坐标为,又因为样本中心点在回归方程上且,解得:,当时,,故答案为1.考点:回归方程【名师点睛】本题考查线性回归方程,属容易题.两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.解题时根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的的值,代入线性回归方程,预报要销售的件数.16、54.【解析】
设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【详解】设首项为,公差为,由题意,可得解得所以.【点睛】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)公比为4;(2)【解析】
(1)设,然后根据相关条件去计算公比;(2)由(1)的结论计算的表达式,然后再计算的通项公式.【详解】(1)设.∴,∴,.∴,即的公比为4(2)∵,∴,即,当时,,当时,符合,∴【点睛】(1)已知等差数列的三项成等比数列,可利用首项和公差将等式列出,找到首项和公差的关系;(2)利用计算通项公式时,要注意验证的情况.18、(1);(2).【解析】
(1)利用正弦定理化边为角,再依据两角和的正弦公式以及诱导公式,即可求出,进而求得角A的大小:(2)依第一问结果,先由三角形面积公式求出,再利用余弦定理求出,联立即可求解出,的值.【详解】(1)由及正弦定理得,整理得,,,因为,且,所以,,又,所以,.(2)因为的面积,所以,①由余弦定理得,,所以,②联立①②解得,.【点睛】本题主要考查利用正余弦定理解三角形和三角形面积公式的应用,涉及利用两角和的正弦公式、诱导公式对三角函数式的恒等变换.19、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】
(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.20、(1)或;(2).【解析】
(1)利用等差数列性质先求出的值,进而得到公差,最后写出数列的通项公式;(2)依照题意找出(1)中符合条件的数列,再用等差数列前项和公式求出数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年零售业数据中台建设及日常运维问题集
- 2026年经济学家基础知识专业测试题集
- 2026年营养师考试专业知识题集
- 2026年医疗设备维护与管理考试练习题
- 2026年经济政策与市场分析笔试题
- 2026年体育竞技战术分析题库含比赛策略制定
- 2026年高考英语作文专项练习题目
- 2026年旅游管理专业进阶旅游规划与景区管理试题集
- 2026年法律从业者选拔笔试法律实务预测试题
- 2026年财务管理及财务报表分析知识试题库
- 2026年春期人教版二年级下册数学全册教案(核心素养教案)
- 2026年广东省湛江市高三一模高考数学试卷试题(答案详解)
- 2025年龙井市面向委培生和定向生招聘员额岗位(5人)笔试参考题库及答案解析
- 人教版三年级下册数学全册教学设计(配2026年春改版教材)
- 水利工程地质勘察规范(标准版)
- 燃料安全生产管理制度
- 2026年农业科技行业智能灌溉系统报告及未来农业创新发展趋势报告
- 给排水管道非开挖垫衬法再生修复施工技术
- 台球厅安全生产应急预案
- 九年级 22天1600个中考词汇背默专项训练(英语)
- CSCO肿瘤相关静脉血栓栓塞症预防与治疗指南(2024)课件
评论
0/150
提交评论