四川省成都嘉祥外国语学校2026届高一下数学期末学业质量监测模拟试题含解析_第1页
四川省成都嘉祥外国语学校2026届高一下数学期末学业质量监测模拟试题含解析_第2页
四川省成都嘉祥外国语学校2026届高一下数学期末学业质量监测模拟试题含解析_第3页
四川省成都嘉祥外国语学校2026届高一下数学期末学业质量监测模拟试题含解析_第4页
四川省成都嘉祥外国语学校2026届高一下数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都嘉祥外国语学校2026届高一下数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.2.在等比数列中,成等差数列,则公比等于()A.1

2 B.−1

−2 C.1

−2 D.−1

23.已知中,,,,则BC边上的中线AM的长度为()A. B. C. D.4.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.25.在等比数列{an}中,若a2,a9是方程x2﹣2x﹣6=0的两根,则a4•a7的值为()A.6 B.1 C.﹣1 D.﹣66.若,则的最小值为()A. B. C.3 D.27.已知,则()A. B. C. D.8.已知m、n、a、b为空间四条不同直线,α、β、为不同的平面,则下列命题正确的是().A.若,,则B.若,,则C.若,,,则D.若,,,则9.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=,=(cosA,sinA),若与夹角为,则acosB+bcosA=csinC,则角B等于()A. B. C. D.10.已知,且为第二象限角,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设实数满足,则的最小值为_____12.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;13.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.14.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.15.若复数满足(为虚数单位),则__________.16.直线的倾斜角的大小是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列中,,是和的等差中项.(1)求数列的通项公式;(2)记,求数列的前项和.18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.19.已知圆过点.(1)点,直线经过点A且平行于直线,求直线的方程;(2)若圆心的纵坐标为2,求圆的方程.20.已知圆,过点作直线交圆于、两点.(1)当经过圆心时,求直线的方程;(2)当直线的倾斜角为时,求弦的长;(3)求直线被圆截得的弦长时,求以线段为直径的圆的方程.21.记数列的前项和为,已知点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了2、C【解析】

设出基本量,利用等比数列的通项公式,再利用等差数列的中项关系,即可列出相应方程求解【详解】等比数列中,设首项为,公比为,成等差数列,,即,或答案选C【点睛】本题考查等差数列和等比数列求基本量的问题,属于基础题3、A【解析】

利用平行四边形对角线的平方和等于四条边的平方和,求的长.【详解】延长至,使,连接、,如图所示;由题意知四边形是平行四边形,且满足,即,解得,所以边上的中线的长度为.故选:A.【点睛】本题考查平行四边形对角线的平方和等于四条边的平方和应用问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.4、B【解析】根据椭圆可以知焦点为,离心率,故选B.5、D【解析】

由题意利用韦达定理,等比数列的性质,求得a4•a7的值.【详解】∵等比数列{an}中,若a2,a9是方程x2﹣2x﹣6=0的两根,∴a2•a9=﹣6,则a4•a7=a2•a9=﹣6,故选:D.【点睛】本题主要考查等比数列的性质及二次方程中韦达定理的应用,考查了分析问题的能力,属于基础题.6、A【解析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.7、A【解析】分析:利用余弦的二倍角公式可得,进而利用同角三角基本关系,使其除以,转化成正切,然后把的值代入即可.详解:由题意得.∵∴故选A.点睛:本题主要考查了同角三角函数的基本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.8、D【解析】

根据空间中直线与平面、平面与平面位置关系及其性质,即可判断各选项.【详解】对于A,,,只有当与平面α、β的交线垂直时,成立,当与平面α、β的交线不垂直时,不成立,所以A错误;对于B,,,则或,所以B错误;对于C,,,,由面面平行性质可知,或a、b为异面直线,所以C错误;对于D,若,,,由线面垂直与线面平行性质可知,成立,所以D正确.故选:D.【点睛】本题考查了空间中直线与平面、平面与平面位置关系的性质与判定,对空间想象能力要求较高,属于基础题.9、B【解析】

根据向量夹角求得角的度数,再利用正弦定理求得即得解.【详解】由已知得:所以所以由正弦定理得:所以又因为所以因为所以所以故选B.【点睛】本题考查向量的数量积和正弦定理,属于中档题.10、D【解析】

首先根据题意得到,,再计算即可.【详解】因为,且为第二象限角,,..故选:D【点睛】本题主要考查正切二倍角的计算,同时考查了三角函数的诱导公式和同角三角函数的关系,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由实数满足作出可行域如图,

由图形可知:.

令,化为,

由图可知,当直线过点时,直线在轴上的截距最小,有最小值为1.

故答案为:1.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.12、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.13、6.【解析】

根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.14、【解析】

考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.15、【解析】分析:由复数的除法运算可得解.详解:由,得.故答案为:.点睛:本题考查了复数的除法运算,属于基础题.16、【解析】试题分析:由题意,即,∴.考点:直线的倾斜角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)用等比数列的首项和公比分别表示出已知条件,解方程组即可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入bn=an•log2an,求出bn,利用错位相减法求出Tn.【详解】(1)设数列的公比为,由题意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【点睛】本题考查等比数列的通项公式和等差中项的概念以及错位相减法求和,考查运算能力,属中档题.18、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】

试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.19、(1);(2).【解析】

(1)求出直线的斜率,由直线与直线平行,可知这两条直线的斜率相等,再利用点斜式可得出直线的方程;(2)由题意得出点在线段的中垂线上,可求出点的坐标,再利用两点间的距离公式求出圆的半径,于此可写出圆的标准方程.【详解】(1)直线过点,斜率为,所以直线的方程为,即;(2)由圆的对称性可知,必在线段的中垂线上,圆心的横坐标为:,即圆心为:,圆的半径:,圆的标准方程为:.【点睛】本题考查直线的方程,考查圆的方程的求解,在求解直线与圆的方程中,充分分析直线与圆的几何要素,能起到简化计算的作用,考查计算能力,属于中等题.20、(1);(2);(3).【解析】

(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长;(3)利用垂径公式,明确是的中点,进而得到以线段为直径的圆的方程.【详解】()圆的方程可化为,圆心为,半径为.当直线过圆心,时,,∴直线的方程为,即.()因为直线的倾斜角为且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论