2026届广东省揭阳市产业园区数学高一下期末复习检测试题含解析_第1页
2026届广东省揭阳市产业园区数学高一下期末复习检测试题含解析_第2页
2026届广东省揭阳市产业园区数学高一下期末复习检测试题含解析_第3页
2026届广东省揭阳市产业园区数学高一下期末复习检测试题含解析_第4页
2026届广东省揭阳市产业园区数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省揭阳市产业园区数学高一下期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B. C. D.2.如图,正四棱柱中(底面是正方形,侧棱垂直于底面),,则异面直线与所成角的余弦值为()A. B. C. D.3.函数的定义域为R,数列是公差为的等差数列,若,,则()A.恒为负数 B.恒为正数C.当时,恒为正数;当时,恒为负数 D.当时,恒为负数;当时,恒为正数4.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱5.等比数列的前n项和为,已知,则A. B. C. D.6.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则7.边长为的正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,则直线与平面所成角的正弦值为()A. B. C. D.8.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切9.直线的倾斜角为A. B. C. D.10.已知,是两个单位向量,且夹角为,则与数量积的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与的交点坐标为________.12.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.13.已知,若角的终边经过点,求的值.14.己知是等差数列,是其前项和,,则______.15.已知,则的最小值是__________.16.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?18.已知函数.(1)当时,解不等式;(2)若,的解集为,求的最小値.19.已知等差数列与等比数列满足,,且.(1)求数列,的通项公式;(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.20.已知为数列的前项和,.(1)求数列的通项公式;(2)设,求数列的前项和.21.如图,圆锥中,是圆的直径,是底面圆上一点,且,点为半径的中点,连.(Ⅰ)求证:平面;(Ⅱ)当是边长为4的正三角形时,求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求得集合,再结合集合的交集的概念及运算,即可求解.【详解】由题意,集合,所以.故选:B.【点睛】本题主要考查了集合的交集的运算,其中解答中正确求解集合B,结合集合的交集的概念与运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】

试题分析:连结,异面直线所成角为,设,在中考点:异面直线所成角3、A【解析】

由函数的解析式可得函数是奇函数,且为单调递增函数,分和两种情况讨论,分别利用函数的奇偶性和单调性,即可求解,得到结论.【详解】由题意,因为函数,根据幂函数和反正切函数的性质,可得函数在为单调递增函数,且满足,所以函数为奇函数,因为数列是公差为的等差数列,且,则①当时,由,可得,所以,所以,同理可得:,所以,②当时,由,则,所以综上可得,实数恒为负数.故选:A.【点睛】本题主要考查了函数的单调性与奇偶性的应用,以及等差数列的性质的应用,其中解答中合理利用等差数列的性质和函数的性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4、B【解析】试题分析:由三视图中的正视图可知,由一个面为直角三角形,左视图和俯视图可知其它的面为长方形.综合可判断为三棱柱.考点:由三视图还原几何体.5、A【解析】设公比为q,则,选A.6、C【解析】

根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.7、D【解析】

在正方形中连接,交于点,根据正方形的性质,在折叠图中平面,得到,从而平面,面平面,则是在平面上的射影,找到直线与平面所所成的角.然后在直角三角中求解.【详解】如图所示:在正方形中连接,交于点,在折叠图,连接,因为,所以平面,所以,又因为,所以平面,又因为平面,所以平面,则是在平面上的射影,所以即为所求.因为故选:D【点睛】本题主要考查了折叠图问题,还考查了推理论证和空间想象的能力,属于中档题.8、C【解析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定9、D【解析】

求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.10、B【解析】

根据条件可得,,,然后进行数量积的运算即可.【详解】根据条件,,,,当时,取最小值.故选:B【点睛】本题考查了向量数量积的运算,同时考查了二次函数的最值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.12、6【解析】

设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.13、【解析】

由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.14、-1【解析】

由等差数列的结合,代入计算即可.【详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【点睛】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.15、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.16、【解析】

由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【点睛】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.【解析】试题分析:(1)根据利润等于收入减成本列式:,由投入的肥料费用不超过5百元及实际意义得定义域,(2)利用基本不等式求最值:先配凑:,再根据一正二定三相等求最值.试题解析:解:(1)().(2).当且仅当时,即时取等号.故.答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.18、(1)或;(2)最小值为.【解析】

(1)由一元二次不等式的解法即可求得结果;(2)由题的根即为,,根据韦达定理可判断,同为正,且,从而利用基本不等式的常数代换求出的最小值.【详解】(1)当时,不等式,即为,可得,即不等式的解集为或.(2)由题的根即为,,故,,故,同为正,则,当且仅当,等号成立,所以的最小值为.【点睛】本题考查一元二次不等式的解法和基本不等式的知识,考查逻辑推理能力和计算能力,属中档题.19、(1),.(2)存在正整数,,证明见解析【解析】

(1)根据题意,列出关于d与q的两个等式,解方程组,即可求出。(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。【详解】(1)解:设等差数列与等比数列的公差与公比分别为,,则,解得,于是,,.(2)解:由,即,①,②①②得:,从而得.令,得,显然、所以数列是递减数列,于是,对于数列,当为奇数时,即,,,…为递减数列,最大项为,最小项大于;当为偶数时,即,,,…为递增数列,最小项为,最大项大于零且小于,那么数列的最小项为.故存在正整数,使恒成立.【点睛】本题考查等差等比数列,利用错位相减法求差比数列的前n项和,并讨论其最值,属于难题。20、(1);(2).【解析】

(1)由即可求得通项公式;(2)由(1)中所求的,以及,可得,再用裂项求和求解前项和即可.【详解】(1)当时,整理得,即数列是以首项为,公比为2的等比数列,故(2)由(1)得,,故=故数列的前项和.【点睛】本题考查由和之间的关系求解数列的通项公式,以及用裂项求和求解前项和,属数列综合基础题.21、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)由平面,证得,再由为等边三角形,得到,利用线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论