版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省通榆县第一中2026届高一数学第二学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列中,,且有,则()A. B. C. D.2.已知等差数列的前项的和为,若,则等于()A.81 B.90 C.99 D.1803.如图,是圆的直径,,假设你往圆内随机撒一粒黄豆,则它落到阴影部分的概率为()A. B. C. D.4.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.126.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.7.棱长为2的正方体的内切球的体积为()A. B. C. D.8.已知直线的倾斜角为,且过点,则直线的方程为()A. B. C. D.9.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.10.已知向量,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.12.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.13.设变量满足条件,则的最小值为___________14.已知x,y满足,则的最大值为________.15.已知,则___________.16.函数的最小正周期为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.18.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?19.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(20.如图,已知函数,点分别是的图像与轴、轴的交点,分别是的图像上横坐标为的两点,轴,共线.(1)求的值;(2)若关于的方程在区间上恰有唯一实根,求实数的取值范围.21.设,求函数的最小值为__________.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,,所以选A2、B【解析】
根据已知得到的值,利用等差数列前项和公式以及等差数列下标和的性质,求得的值.【详解】依题意,所以,故选B.【点睛】本小题主要考查等差数列的性质,考查等差数列前项和的计算,属于基础题.3、B【解析】
先根据条件计算出阴影部分的面积,然后计算出整个圆的面积,利用几何概型中的面积模型即可计算出对应的概率.【详解】设圆的半径为,因为,所以,又因为,所以落到阴影部分的概率为.故选:B.【点睛】本题考查几何概型中的面积模型的简单应用,难度较易.注意几何概型的常见概率公式:.4、A【解析】
根据,因此只需把函数的图象向左平移个单位长度.【详解】因为,所以只需把函数的图象向左平移个单位长度即可得,选A.【点睛】本题主要考查就三角函数的变换,左加右减只针对,属于基础题.5、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。6、D【解析】
由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.7、C【解析】
根据正方体的内切球的直径与正方体的棱长相等可得结果.【详解】因为棱长为2的正方体的内切球的直径与正方体的棱长相等,所以直径,内切球的体积为,故选:C.【点睛】本题主要考查正方体的内切球的体积,利用正方体的内切球的直径与正方体的棱长相等求出半径是解题的关键.8、B【解析】
根据倾斜角的正切值为斜率,再根据点斜式写出直线方程,化为一般式即可.【详解】因为直线的倾斜角为,故直线斜率.又直线过点,故由点斜式方程可得整理为一般式可得:.故选:B.【点睛】本题考查直线方程的求解,涉及点斜式,属基础题.9、C【解析】
试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.考点:古典概型10、D【解析】
先求出的模长,然后由可求出答案.【详解】由题意,,,所以与的夹角为.故选D.【点睛】本题考查了两个向量的夹角的求法,考查了向量的模长的计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、12【解析】
直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.12、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.13、-1【解析】
根据线性规划的基本方法求解即可.【详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【点睛】本题主要考查了线性规划的基本运用,属于基础题.14、6【解析】
作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15、;【解析】
把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.16、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2)证明见解析,;(3).【解析】
(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【点睛】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相关的问题,利用参变量分离法可简化计算,考查化归与转化思想和运算求解能力,综合性较强,属于难题.18、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】
(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本题考查的是数列的综合知识,包含通项公式的求法、前n项和的求法及数列的单调性.19、(1)an=4n-3【解析】
(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【详解】(1)设等差数列an的公差为d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【点睛】本题考查了等差数列的通项公式,考查了利用裂项相消进行数列求和的方法,属于基础题.20、(Ⅰ),(Ⅱ)或【解析】试题分析:解:(Ⅰ)建立,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碘125粒子植入课件
- 2026年税务知识竞赛专项附加扣除中的大病医疗政策
- 2026年电子商务运营技能考核题集市场分析产品推广实操考核
- 2026年网络工程师网络设备配置网络故障排除技术题库
- 2026年全职猎人口语练习材料与考点模拟题
- 2026年计算机视觉技术试题集成像原理与图像处理技术
- 2026年工程造价预算与管理实操试题及答案
- 2026届福建省永安市一中高一下数学期末教学质量检测试题含解析
- 2026年人力资源管理专业知识测试题库员工激励与绩效管理
- 2026届陕西省西安市西工大附中生物高一下期末联考试题含解析
- 非标压力容器培训课件
- (2025年)教育博士(EdD)教育领导与管理方向考试真题附答案
- 2026版二建《建设工程法规及相关知识》精讲课程讲义(完整打印版)
- 山西十五五规划
- 咯血的急救及护理
- 2025初三历史中考一轮复习资料大全
- 粮库安全生产工作计划
- 涉诉涉法信访课件
- 砂石料购销简单版的合同
- 春运安全行车知识培训课件
- 2025年湖北十堰武当山机场招聘笔试备考题库(带答案详解)
评论
0/150
提交评论