版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省辽河油田二中2026届高一下数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角所对的边分别是,若,则角的值为()A. B. C. D.2.过点斜率为-3的直线的一般式方程为()A. B.C. D.3.已知中,,,为边上的中点,则()A.0 B.25 C.50 D.1004.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.5.已知直线经过两点,则的斜率为()A. B. C. D.6.下面结论中,正确结论的是()A.存在两个不等实数,使得等式成立B.(0<x<π)的最小值为4C.若是等比数列的前项的和,则成等比数列D.已知的三个内角所对的边分别为,若,则一定是锐角三角形7.下列各数中最小的数是()A. B. C. D.8.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.9.直线的倾斜角是()A. B. C. D.10.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.12.平面⊥平面,,,,直线,则直线与的位置关系是___.13.如图,长方体中,,,,与相交于点,则点的坐标为______________.14.已知等比数列的前项和为,若,且,则_____.15.某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:)之间的关系如下:x012y5221通过上面的五组数据得到了x与y之间的线性回归方程:;但现在丢失了一个数据,该数据应为____________.16.数列{}的前项和为,若,则{}的前2019项和____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(1)当时,解不等式;(2)若对,不等式恒成立,求a的取值范围.18.中,角的对边分别为,且.(I)求角的大小;(II)若,求的最小值.19.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.20.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.21.已知函数(1)求的最值、单调递减区间;(2)先把的图象向左平移个单位,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用正弦定理,求得,再利用余弦定理,求得,即可求解.【详解】在,因为,由正弦定理可化简得,即,由余弦定理得,因为,所以,故选C.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.2、A【解析】
由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.3、C【解析】
三角形为直角三角形,CM为斜边上的中线,故可知其长度,由向量运算法则,对式子进行因式分解,由平行四边形法则,求出向量,由长度计算向量积.【详解】由勾股定理逆定理可知三角形为直角三角形,CM为斜边上的中线,所以,原式=.故选C.【点睛】本题考查向量的线性运算及数量积,数量积问题一般要将两个向量转化为已知边长和夹角的两向量,但本题经化简能得到共线的两向量所以直接根据模的大小计算即可.4、A【解析】
先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.5、A【解析】
直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。6、A【解析】
对各个选项逐一判断,对于选项A,由,代入计算,即可判断是否正确;对于选项B,设,结合函数的单调性,即可判断是否正确;对于选项C,由公比为为偶数,即可判断是否正确;对于选项D,由余弦定理,即可判断是否正确.【详解】对于选项A,两个不等实数,使得等式成立,故A正确;对于选项B,若设设,可得在递减,即函数的最小值为,故B错误;对于选项C,是等比数列的前项的和,当公比,为偶数时,则,均为,不能够成等比数列,故C错误;对于选项D,中,若,可得,即为锐角,不能判断一定是锐角三角形,故D错误.故选:A.【点睛】本题考查两角和的正弦公式、基本不等式和等比数列的性质,以及余弦定理的应用,属于基础题.7、D【解析】
将选项中的数转化为十进制的数,由此求得最小值的数.【详解】依题意,,,,故最小的为D.所以本小题选D.【点睛】本小题主要考查不同进制的数比较大小,属于基础题.8、C【解析】
直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.9、B【解析】
先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.10、A【解析】
利用正弦定理求出的值,再结合,得出,从而可得出的值。【详解】由正弦定理得,,,则,所以,,故选:A。【点睛】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.12、【解析】
利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.13、【解析】
易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.14、4或1024【解析】
当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.15、4【解析】
根据回归直线经过数据的中心点可求.【详解】设丢失的数据为,则,,把代入回归方程可得,故答案为:4.【点睛】本题主要考查回归直线的特征,明确回归直线一定经过样本数据的中心点是求解本题的关键,侧重考查数学运算的核心素养.16、1009【解析】
根据周期性,对2019项进行分类计算,可得结果。【详解】解:根据题意,的值以为循环周期,=1009故答案为:1009.【点睛】本题考查了周期性在数列中的应用,属于中档题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)或.【解析】
(1)代入,把项都移到左边,合并同类项再因式分解,即可得到本题答案;(2)等价于,考虑的图象不在图象的上方,利用数形结合的方法,即可得到本题答案.【详解】(1)当时,由得,即,解得,或,所以,所求不等式的解集为或;(2)等价于,所以当时,的图象在图象的下方,所以或所以,,或.【点睛】本题主要考查一元二次不等式以及利用数形结合的方法解决不等式的恒成立问题.18、(I);(II)最小值为2.【解析】
(I),化简即得C的值;(II)【详解】(I)因为,所以;(II)由余弦定理可得,,因为,所以,当且仅当的最小值为2.【点睛】本题主要考查正弦定理余弦定理解三角形和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)见解析(2)见解析(3)【解析】
(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄平面ABC,MC⊂平面ABC∴FD∥平面ABC.(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF⊂面EAB∴CM⊥AF,又CM∥FD,从而FD⊥AF,因F是BE的中点,EA=AB所以AF⊥EB.EB,FD是平面EDB内两条相交直线,所以AF⊥平面EDB.(3)几何体的体积等于为中点,连接平面【点睛】本题考查了线面平行,线面垂直,等体积法,意在考查学生的空间想象能力和计算能力.20、(1);(2).【解析】
(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【点睛】本题考查正弦型函数的最小正周期、三角形面积的求解,涉及到正弦定理、余弦定理、三角形面积公式、两角和差正弦公式、二倍角公式、辅助角公式的应用,考查学生对于三角函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大庆在编教师考核制度
- 餐厅调酒师考核制度
- 对快递公司考核制度
- 幼儿园升旗考核制度
- 药店中药员工考核制度
- 教职员工品行考核制度
- 广东省2026届高三联合模拟考试(一)语文试题及参考答案
- 2026届高中毕业班模拟测试地理试题及答案
- 植物学考试题+参考答案
- 护理危重患者相关试题及答案
- 2026内蒙古地质矿产集团有限公司社会招聘65人备考题库附答案详解(a卷)
- 2026年常州工业职业技术学院单招综合素质考试模拟测试卷附答案解析
- (二统)大理州2026届高中毕业生高三第二次复习统一检测语文试卷(含答案及解析)
- 泸州白酒行业分析报告
- 蒙古族服饰概览
- django基于深度学习的旅游系统设计与实现-论文13000字
- 《采煤机》课件-第二章 采煤机截割部
- 民营企业工作作风存在的问题及整改措施
- (完整版)陆河客家请神书
- 教学大纲-跨境电子商务法律法规
- 上海市历年中考语文现代文之议论文阅读6篇(含答案)(2003-2022)
评论
0/150
提交评论