翻译.docx

2134 M7130平面磨床主轴系统改造设计

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:86394034    类型:共享资源    大小:1.82MB    格式:RAR    上传时间:2020-06-16 上传人:加Q294****549海量... IP属地:湖南
30
积分
关 键 词:
2134 M7130平面磨床主轴系统改造设计 M7130 平面磨床 主轴 系统 改造 设计
资源描述:
2134 M7130平面磨床主轴系统改造设计,2134,M7130平面磨床主轴系统改造设计,M7130,平面磨床,主轴,系统,改造,设计
内容简介:
湘潭大学兴湘学院本科生毕业设计(论文)提高刀具表面的抗粘性能力通过纳米/微质感技术T.Enomoto, T.Sugihara机械工程学院,工程系,丘吹田,大阪565-0871,日本大阪大学研究生院提交,日本大阪。铝合金复合材料的需求迅速增加,特别是在交通运输业,这种需求是由于作为一种高强度质量比和高耐腐蚀性等关键优势。然而,铝屑容易依附在切割工具的边缘,常常导致工具破损。为了解决这个问题,我们已经利用飞秒激光技术开发出纳米/微质感表面刀具。实验表明,利用这种技术在端面铣削时,工具表面的光滑性和抗粘接性能有着显著提高。1 介绍铝合金有着多种优势,包括高质量比和高耐腐蚀性。因此,铝合金的需求迅速增加,尤其是在运输业。铝合金与钢相比,由于其硬度低,易于切割,但这种优势在某些应用中有时会因为其熔点低,延展性高,导致铝芯片工具的切削刃降低,从而导致机床故障。工具的许多不同的切屑参数已得到改善,如几何形状,表面涂层 2 ,及精加工。例如,类金刚石碳(金刚石)涂层刀具具有极低的摩擦而被应用在干燥或接近干切削铝合金 3,但在实际使用中,铝芯片类金刚石涂层工具无法避免的在切削液中工作。此外,刀具破损经常发生在切削过程,深孔钻削,铣削,攻牙,它的切削点是很难直接提供切削液。为解决上述问题,我们采用了表面工程的方法,即,一个功能化工具表面的纹理。我们开发了一种微结构的刀具,以确定刀具前刀面保持在切削液中7,显着改善刀具前刀面的摩擦,切削力和摩擦系数,刀-屑粘附性尚未调查。在这项研究中,我们评估了微粗糙表面抗粘性的影响和开发技术,以提高使用更精致的表面纹理。基于我们的研究结果,我们开发了一个与纳米/微质感表面的切削工具,以改善所需的抗粘结效果。我们也评估了相应的切削性能。2 刀具表面微结构2.1。切削刀具与微表面纹理图1。以前开发的微粗糙表面的切削工具(大写:示意图;:SEM图像)7。图1显示一个原理图说明和扫描电子显微镜(扫描)(日立高新科技公司,-3400nx)图像的切割工具与微质感分段金刚石涂层 7。我们在准备的工具基础上 8。首先,通过等离子体增强化学气相沉积(CVD)方法在硬质合金刀具的前刀面均匀涂布类金刚石膜,(住友电工超硬合金株式会社,SEKN42M)。接下来,用钨铁丝网涂层刀具的表面,作为一个面具,以创建一个网格。在利用金刚石涂层的化学气相沉积法再涂上第二层,使得类金刚石薄膜的部分尺寸为150毫米x 150毫米x 0.8毫米,间距为80毫米的深栅槽,2.2。切削实验程序铝合金A5052采用立式加工中心进行切割实验(山崎马扎克公司,AJV-18)实验装置如图所示图2 。图3显示了单个插入刀具的几何形状。刀具的中心对应工件的中心线。表1列出了切削条件。乳化型切削液(NEOS有限公司,Finecut中心-100)提供12.6升/分钟的流量。测功机(奇石有限公司,9257B)设置测量工件切削力的三个组成部分。图2。面铣测试的实验装置。图3.切割工具的几何形状。切割900米后,观察评估刀具前刀面工具表面的附着力。电镜扫描图像(图4)证实,芯片粘附发生前刀面上,更具体地说,该凹槽被掩埋在附近的尖端上。刀-屑接触长度的理论计算约为180毫米,这表明该段有足够大的(150毫米150毫米)工具-芯片接触面。凹槽是如此之广,芯片材料很容易进入沟槽和堵塞。图4。切割工具切割900米后微质感表面。3。纳米/微质感表面切割工具考虑到上述结果,我们举例设计了新的纹理刀具表面:1)提高并保留足够的工具和芯片之间的流体和一个稳定的流体膜润滑; 2)通过降低刀具表面和芯片之间的接触面积,而减少摩擦。然后通过纳米/微沟槽技术,而制造出的刀具表面,以达到这些目的。通过激光诱导周期性表面结构技术来生产纳米/微沟槽 9 , 10前刀面上的切削工具。在线偏振飞秒激光脉冲的照射下,而引起的入射激光脉冲和表面散射光,在等离子体波之间的干扰下而使得表面存在缺陷。精确的固定槽自组织通过调整略高于消融阈值低剂量激光能量,与间隔规则的结构是相同的或小于激光的波长。应用这一技术,在切削工具的前刀面上使用钛蓝宝石激光系统定期产生100-150纳米和700纳米/微沟槽(佳能机械Inc.Model Surfbeat R;峰值波长为800纳米,脉冲宽度150 fs的,循环频率1 kHz,脉冲能量300兆焦耳)如图5所示,纳米/微沟槽形成正弦-波,这被认为是最大限度地减少刀具表面和芯片之间的接触。激光辐照前,以抛光金刚石切割工具的前刀面的表面粗糙度为40(峰谷)图5。新开发的工具纳米/微质感表面使用表1中列出的切削条件下进行了初步的切割与抛光,和表面的切削刀具和刀具与凹槽平行尖端实验。刀具的前刀面坚持以芯片质感打磨工具(图6)类似的方式,显示反胶的效果没有得到充分的晋升时只修改表面纹理。然后,在切削刀具的表面利用电弧离子镀类金刚石薄膜涂层以提高抗胶粘性。涂层降低了10毫米或更小的沟槽深度。图6。扫描电镜图像为切割900米前刀面涂层刀具。表1切削条件。工件A5052 W75毫米的210毫米古河天空铝业公司工具硬质合金住友电工硬质合金有限公司,sekn42米几何刀具轴向前角,普遍径向前角,倾角,顶角,克刀具直径20一3。12.44580mm切削速度切削深度进给率切削长度380m/min 3 mm0.12 mm/rev.180m x 5, 10 passes切削液 乳液型近地物体的有限公司,finecut cfs100,供给率12.6 L/min4。刀具性能4.1评估防粘连。三种类型的刀具进行了评价:(1)的类金刚石涂层刀具沟槽平行于切削刃(平行槽工具);(2)的类金刚石涂层刀具沟槽垂直于切削刃(正交槽工具);(3)传统的金刚石涂层工具与抛光表面(抛光工具),如图7所示,切割1800米后使用扫描电子显微镜和能量色散X射线光谱(能谱)分析前刀面切割工具和对性能进行了评价。图8显示图形为前刀面上铝原子浓度,定量衡量一个edx-al图像。图7。切削刀具切割后前刀面(左:扫描电镜图像;右:edx-al图像)图8切削刀具前刀面上的铝原子从图6和7,我们发现,类金刚石涂层铝附着力降低。 图7和8证明,刀具表面纳米/微有很好的防粘性能,特别是纳米/微沟槽平行的主切削刃。更具体地说,抛光工具粘连面积减少三分之一。增加纳米/微槽方向上性粘连可描述如下,在正交槽工具下,芯片刀具前刀面总是与面接触,从而增加芯片的粘附,导致切割工具芯片的接口上的油膜破裂。在平行槽工具的情况下,芯片接触到刀具前刀面,避免了芯片的附着力和工具芯片的接口切割液的断续。利用光学显微镜(KEYENCE的公司,VF-7500)每切割距离180米后进行工具表面的观察,评估切割进步的附着力的变化,图9为计算的显微图像分析。显示了中铝粘连面积的变化。在新开发的工具中,粘附地区略有增加。特别是,平行槽工具长约八分之一的地区相比。图9。变化的粘附区与切割刀面距离切割后1800米后,在正交方向切割边缘测量刀具前刀面的截面轮廓,如图10所示,前刀面上的抛光工具集结在边缘0.5毫米处产生,而这是开发工具可以忽略不计的。图10。切削刀具后刀面的截面轮廓最后,高倍率SEM观察,以确定详细的刀具表面的附着力(图11),从这个数据,我们证实了切割1800米后纳米/微沟槽不被粘附。图11。切割1800米后平行于开发工具的前刀面与纳米/微沟槽的边缘4.2。评价刀具表面的润滑性进行了切削剪切角和切削力的评估,以确定对切削性能的影响。众所周知,剪切角随刀具前刀面上的摩擦而减少,立体切割后逼近二维切割,下面是剪切角F的有效二维切割计算公式, ,其中RC为切割比例,H是变形的芯片厚度,HC是芯片的厚度,a是倾角。H是以小时计算,HC采用每隔2毫米的千分尺。获得高于纳米/微抛光工具剪切角的开发工具,实现良好的工具表面的润滑性,如图12所示。图12。在刀具旋转时剪切角的变化切削力,刀具前刀面的摩擦系数在计算时使用的措施。结果在图13表明显示,纳米/微显著改善表面润滑性。此外,我们证实,在整个实验中低摩擦系数保持不变。图13。刀面的摩擦系数5。结论纳米/微质表面切削工具被开发出来,改善了铝合金切割的抗粘接性能。特别是,我们也开发了有一个深100-150纳米和700纳纳米/微质刀面的切削刀具。纳米/微质感和金刚石涂层大大提高抗粘接性能和刀具表面的润滑。平行于主切削刃的纳米/微沟槽开发工具,最需要改进的为其抗粘接性能。鸣谢这项工作由日本教育部支持,用于文化,体育,科学和技术科学研究(21560123,2009)参考文献 1拜恩克, Dornfeld,Denkena(2003)先进的切割工艺 机械工程研究所52(2):483-507。2克洛克楼,P6hls,Zinkann至Gerschwiler,弗里奇Eisenbliitter(1998)Krieg T,改进切割改编的涂层系统的过程。机械工程研究所47(1):65-68。3 Bhowmick S,Alpas AT(2008)最低数量的水铝 - 硅合金类金刚石碳涂层钻头使用的润滑钻。国际机床杂志与制造48:1429-1443。4吉村H,T,森胁大前研一氮,Shibasaka,木下松井中号,清水米(2006)近干切削铝合金的研究。国际 - 日本机械工程师C系列49(1):83-8902874857。5 CJ-埃文斯,布莱恩JB(1999)结构,纹理或工程曲面。 机械工程研究所48(2):541-5566,哥斯达黎加HL Bruzzone AAG的,Lonardo,卢卡DA(2008)在曲面设计功能性能的进展。机械工程研究所57纪事(2):750-769。7:榎T,青木,大竹氮(2007)微结构表面与刀具的发展。日本交易国税发日本机械工程师学会C系列73(729):288-293。8青木,大竹氮(2004) 碳薄膜的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:2134 M7130平面磨床主轴系统改造设计
链接地址:https://www.renrendoc.com/paper/86394034.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!