英语翻译.doc

3205 木板材下料锯的设计

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:86401671    类型:共享资源    大小:590.44KB    格式:RAR    上传时间:2020-06-16 上传人:加Q294****549海量... IP属地:湖南
29
积分
关 键 词:
3205 木板材下料锯的设计 木板 材下料锯 设计
资源描述:
3205 木板材下料锯的设计,3205,木板材下料锯的设计,木板,材下料锯,设计
内容简介:
山东轻工业学院英文资料及中文翻译院系名称 机械工程学院 学生姓名 冯伟涛 专业班级 机械设计制造及其制动化07-5指导教师 赵建国 二一一 年四月十七日英文原文Rapid Prototyping and manufacturingIntroduction The term “rapid prototyping” (RP) is a relatively new expression for the generation of three-dimensional models manufactured without the need for machining or products designed on a computer aided design system, the first rapid prototyping system was introduced on to the US market in 1988 and gave the engineer the opportunity to produce 3 dimensional objects directly from Computer Aided Design (CAD) date and succeed in the cost-effective production of patterns and moulds with complex surfaces. The principle advantages of using this technology are: High speed at which the solid model is generated. The complexity of the model does not form any limitation to its production. The early use of these models was to assist the designer in determining fitness and form. It also provided the sales team with a 3 dimensional object to show to a prospective customer, this being far better than the traditional orthographic drawing which many people find difficult to interpret. The benefits of RP: 1.Converts 3D CAD images into accurate physical models at a fraction of the cost of traditional methods. 2.Improves design communication and helps eliminate design mistakes. 3.Reduces “time to market” for a new product. 4.Can be used as a powerful marketing tool since the prototype can be seen rather than the drawing. 5.The development of this technology has reached into many of the traditional fields, attracting the interest of artisans whose skill any knowledge has led to 3-D objects being used directly and indirectly as patterns and model for soft tooling. 6.Production of models by machining has a number of limitations. 7. Material removed during forming is difficult to reclaim. 8.Machining in the form of drilling turning milling spark erosion etc., is limited by the shapes it can produce. 9.In the event of design change, conventional tooling such as patterns ,core boxes, dies, jigs etc. ,become expensive to alter ,and in many cases, may require complete re-manufacture. What RP&M CAN DO? To substantially shorten the time for developing patterns, moulds, and prototypes, some manufacturing enterprises have started to use rapid prototyping methods for complex patterns making and component prototyping. Over the past few years, a variety of new rapid manufacturing technologies, generally called Rapid Prototyping and Manufacturing(RP&M),have emerged ;the technologies developed include Stereo lithography (SL), selected laser sintering(SLS),fused deposition modeling(FDM),laminated object manufacturing(LOM),and three dimensional printing (3D Print).They have a common important feature ;the prototype part is produced by adding materials rather than removing materials. This simplifies the 3D part producing processes to 2D layer adding processes so that a part can be produced directly from its computer model. Rapid prototyping differs with conventional manufacturing methods by adding material layer by layer until the desired sharp is achieved, immediately reducing or avoiding the loss of material. THE BASIC PROCESS IN RP RP machines process CAD data by slicing the computer model into layers ,each layer being typically 0.1-0.25mm thick the machine then uses this data to construct the model layer by layer ,each layer being bonded to the previous until a solid object is formed. Due to this laminated method of construction a stepped surface is developed on curved faces, the removal of which is essential if maximum advantage of the process is to be realized. Schematic representation of the stepped construction, which requires post processing, is on the above Figure8.1. DEVELOPMENT More recent developments have been prompted by problems caused by the expansion of the model where it is used as a disposable pattern (like the wax pattern in the lost wax process), Where the resin model is produced to form solid walls, expansion during the “burning-out” stage weakens the ceramic shell, and can cause failure in the firing and/or casting stages. The company, 3D System GmbH, has developed a machine and software, which together allow for the model to be constructed in the form of a honeycomb. The honeycomb structure collapses in on itself during “burning-out” thus avoiding the problems of expansion. Each pocket of the honeycomb structure is connected to its neighbor by a small hole that allows for the uncured resin to be drained prior using. Other methods of producing tooling directly from the rapid prototype-such as metal spraying are also being developed, and this seems to have potential in the production of less complex parts, although it is inevitable that some detail will be lost. Prototyping Company ARRK EUROPE LTD, London, has developed a thin layer technology, which removes many of the inaccuracies inherent in mechanical finishing. It claims to be the first company in the world to achieve 0.05mm layer build accuracy. ARRKs development team used a combination of subtle mechanical alterations to setting up of its four stereo lithography (SL) rapid prototyping machines and proprietary techniques to over come de-wetting. It also called upon its knowledge of resins. THE BASIC PROCESS IN RP RP machines process CAD data by slicing the computer model into layers ,each layer being typically 0.1-0.25mm thick the machine then uses this data to construct the model layer by layer ,each layer being bonded to the previous until a solid object is formed. Due to this laminated method of construction a stepped surface is developed on curved faces, the removal of which is essential if maximum advantage of the process is to be realized. Schematic representation of the stepped construction, which requires post processing, is on the above Figure8.1. Using this new technology, the company is now able to produce extremely accurate high-quality master parts and tooling. With 0.05mm layer, the build is more precise and all but eliminates the stair-stepping effect. In addition, the need for finishing is dramatically reduced. As a result, the process is ideal for switches, electronic components or any finely details part. Current Application Areas of RP&M Design Engineering (1) Visualization With RP&M, the prototype of a complex part can be built in short time, therefore engineers canevaluate a design very quickly, for it isnt difficult to visualize exactly what the actual complex product will look like. (2) Verification and optimization Improving product quality is always an important issue of manufacturing. An RP&M prototype can be produced quickly without substantial tooling and labor cost. As a result, the product quality can be improved within the limited time frame and with affordable cost. (3) Iteration With RP&M technology, it is possible to go through multiple design iterations within a short time and substantially reduce the model development time. Manufacturing We can use the RP&M prototype for productively studies. By providing a physical product at an earlier design stage, we can speed up process planning and tooling design. In addition, by accurately describing complex geometry, the prototype can help reduce problems in interpreting the blue prints on the shop floor. It can also be used in tooling development for mould and master pattern for castings. Marketing To assist product sales, a prototype can be used to demonstrate the concept, design ideas, as well as the companys ability to produce it. The reality of the physical model illustrates the feasibility of the design. Also, the prototype can be used to gain customs feedback for design modification so that the final product will meet customs requirement. 中文翻译快速成型和生产介绍 快速成型这个术语是对于不通过机器和工具的三维造型生产而产生的一种新的相关的表示.通过快速生产的准确能力,用电脑设计系统帮助切实的造型的设计生产,第一个快速成型的系统于1988年在美国的市场内被引进并且给工程师一个通过CAD 来设计三维实物的机会且成功的生产出复杂表面的模型. 使用这项技术的操作优势如下: 固态模型的高速产生. 这个模型的复杂性对于生产不能形成任何的限制. 最早使用这些模型是用来帮助设计者决定形状和适当性.它也能提供给预期的顾客展示三维实物的销售群,这将远远优于那些很多人发现很难去解释的传统直角作图. 快速成型的好处: 1.一小部分传统方法的价值是把准确的物理模型转化成三维影象. 2.改进设计的讯息帮助删除设计的错误. 3.对于新的产品减短上市的时间. 4.自从原形相比做图更能被理解后它就能作为一种强有力的工具. 5.这技术的发展到达了入许多传统领域,吸引技巧和知识导致了直接地和间接地使用作为样式和模型的三维对象为软的工具模型。 6.模型的生产是通过用机器制造有一定数量的限制。 7.在成形期间被除去的材料是难回收的。 8.用机器制造以钻井转动的碾碎的火花电蚀等的形式。 由它可能导致的形状限制。 9.在设计变动情形下,常规凿出的装饰例如样式,核心装箱,模子,夹具等。 变得昂贵而难变更,并且在许多情况下,可以要求完全再制造。快速成型法是不同于以通过增加物层数的常规制造方法,直到达到所期望的锐利程度,立刻减少或避免材料的损失层数。 RP&M能做什么? 为开发的样式、模子和原型去极大地缩短时间。一些制造业企业开始对于一些复杂部件的制造和成型的成分使用快速成型的方法。在过去几年,各种各样新的迅速制造业技术,通常称为快速成型和制造(RP&M),已经涌现了;被开发的技术包括立体声石版印刷(SL),所选择的激光焊接(SLS),合并的证言塑造(FDM),薄片叠成物体的制造业(LOM),和3D打印(3D Print)。他们有一个共同的重要特点; 原型零件是通过增加材料而不是除去材料导致的。这简化3D部分生产过程到增加过程的第2层数,以便零件可以直接地由它的计算机模型生产。 快速成型的基本过程 快速成型的机器是通过切计算机模型来制造处理CAD数据入层数,每层数是典型地0.1-0.25毫米厚的机器然后使用这数据一层一层去修建,每一层都将被拈合成以前的样子直到一个坚实对象被形成。由于这个建筑被碾压的方法一个有台阶的表面在弯曲的表面上被开发,如果过程的最大好处被了解,那么其中是根本的将被撤除,有台阶建筑的图示,是要求分步处理的. 发展 更多的发展由与模型的扩展而引起的问题已经提示了,使用
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:3205 木板材下料锯的设计
链接地址:https://www.renrendoc.com/paper/86401671.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!