1623_整数指数幂(2).ppt_第1页
1623_整数指数幂(2).ppt_第2页
1623_整数指数幂(2).ppt_第3页
1623_整数指数幂(2).ppt_第4页
1623_整数指数幂(2).ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十六章 分式,16.2.3 整数指数幂(2),复习回顾,例1:计算,(1) (3m-2n-1)-3,(2) 2a-2 b2 (2a-1 b-2)-3,整数指数幂的运算:,火眼金睛,下面计算对不对?如果不对,应怎样改正?,2、如何用科学记数法表示一个数?,一个数M的绝对值大于1,这个数M可表示为 形式,其中 ,n为正整数, n是原数的整数位数减1。,1、科学计数法: 光速约为300 000 000米/秒 太阳半径约为696 000千米 目前世界人口约为6 100 000 000,3108,6.96105,6.1109,3、用科学记数法表示下列各数: 300000 =_, -5230000=_,

2、 12600=_.,一般地, 10-n =_,自主探究,填空:,1,0.1,0.01,0.001,0.000 1,( n 等于第一个非0数前面所有0 的个数),尝试:我们已经知道一些绝对值较大的数适合用科学记数 法表示,例如: ; 你能利用10的负整数指数幂,将绝对值较小的数表示成 类似形式吗?,0.01= ; 0.000 001= ; 0.000 0257= = ; 0.000 000 125= , = ;,归纳,绝对值小于1的数可以用科学记数法表示为 的形式,其中a是整数数位只 有一位的数,n是正整数,n等于这个数从左边第一个不是零的数字算起前面零的个数(包括小数点前面的零)。,例1:用科

3、学记数法表示下列各数: (1). -0.00060 (2). 0.00007283(保留两个有效数字) (3). 0.00618 (4) -0.00258(精确到万分位),例2:用整数或小数表示下列各数:,=203 000,=0.00 786,=-0.000 005 5,尝试1:用科学记数法表示下列各数 (1)0.000 000 001 (2)0.001 2 (3)0.000 000 345(保留两个有效数字) (4)-0.000 03 (5)0.000 000 010 8,例 纳米是非常小的长度单位,1纳米= 米。 把1纳米的物体放在乒乓球上,就如同把乒乓球 放到地球上。1立方毫米的空间可以

4、放多少个 1立方纳米的物体?,例 计算,B,思考题:,小,结,(1)n是正整数时, a-n属于分式。并且,(a0),(2)科学计数法表示小于1的小数:,a10-n,(a 是整数位只有一位的正数,n是正整数。),思考1:,1、当x为何值时,有意义?,2、当x为何值时,无意义?,3、当x为何值时,值为零?,4、当X为何值时,值为正?,课堂达标测试,基础题:,1.计算: (a+b)m+1(a+b)n-1; (2) (-a2b)2(-a2b3)3(-ab4)5 (3) (x3)2(x2)4x0 (4) (-1.8x4y2z3) (-0.2x2y4z) (-1/3xyz),提高题:,2.已知 ,求a51a8的值;,3.计算:xn+2xn-2(x2)3n-3;,4.已知:10m=5,10n=4,求102m-3n.,思考2:,5.探索规律:31=3,个位数字是3;32=9,个位数字式9;33=27,个位数字是7;34=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论