(新课标)2020年高考数学 题型全归纳 斐波那契数列(通用)_第1页
(新课标)2020年高考数学 题型全归纳 斐波那契数列(通用)_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、斐波那契数列每一对兔子过了出生第一个月之后,每个月生一对小兔子。现把一对初生小兔子放在屋内,问一年后屋内有多少对兔子?先不在这里考虑兔子能否长大,或是某些月份没有生小兔子一类的问题,完全只由数学角度去考虑这问题,意大利数学家斐波那契(Fibonacci)解了这个题目,其内容大约是这样的:在第一个月时,只有一对小兔子,过了一个月,那对兔子成熟了,在第三个月时便生下一对小兔子,这时有两对兔子。再过多一个月,成熟的兔子再生一对小兔子,而另一对小兔子长大,有三对小兔子。如此推算下去,我们便发现一个规律:时间(月)初生兔子(对)成熟兔子(对)兔子总数(对)110120113112412352356358

2、不难发现,每个月成熟兔子的数目是上个月的兔子总数,而初生兔子的数目是上个月成熟兔子的数目,也即是两个月前的兔子总数,因此每个月的兔子总数刚好是上个月和两个月前的的兔子总数之和。由此可得每个月的兔子总数是 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 23, 377.,由此可知一年后有 377 对兔子。若把上述数列继续写下去,得到的数列便称为斐波那契数列,数列中每个数便是前两个数之和,而数列的最初两个数都是 1。若果设 F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13. 则成立这个关系式:当 n 大于 1,Fn+2=Fn+

3、1+ Fn,而 F0=F1=1。下面是一个古怪的式子: (1)Fn看似是无理数,但当 n 是非负整数时,Fn都是整数,而且组成斐波那契数列,因为F0=F1=1,并且Fn+2=Fn+1+ Fn,这可用数学归纳法来证明。利用斐波那契数列解决兔子数目的问题似乎没有甚么用途,因为不能保证兔子真的每月只生一对小兔子一类的问题,但事实上这个数列的应用十分广泛。例如一个走梯级的问题,若某人走上一段梯级,他每一步可以走上一级,或是跳过一级而走到第二级,若他要走上六级,有多少个不同走法?我们可以考虑,若果设 Fn是走 n 级梯级的走法的数目,若他在第n级,他可以走到第 n-1 级,或是跳过第n-1级,走到第 n-2 级,他在第 n-1 级有 Fn-1个走法,而在第 n-2 级有 Fn-2个走法,因此在第n级时的走法是 Fn-2+Fn-1个走法,即 Fn=Fn-2+Fn-1,而他在第二级和第三级的走法分别有 1 个和 2 个,因此可知走法的数目与斐波那契数列有关。我们还可以利用斐波那契数列来做出一个新的数列,方法是把数列中相邻的数字相除,以组成新的数列如下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论