数学中考热点题型一 规律探索题.ppt_第1页
数学中考热点题型一 规律探索题.ppt_第2页
数学中考热点题型一 规律探索题.ppt_第3页
数学中考热点题型一 规律探索题.ppt_第4页
数学中考热点题型一 规律探索题.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、热点题型,题型一 规律探索题,类型一 数式规律,典例精讲,例1按一定规律排列的一列数依次为: ,按此规律,这列数中的第10个数与第16个数的积是_.,【解析】将这列数 ,,分子化为4,则有 ,观察发现,这列数的分子都是4,分母的后一项比前一项大3,那么这列数中第n个数可以表示为 ,因此 .,【答案】,1.数字规律: 标序数(1,2,3,n); 找规律,观察: 当所给的一组数字是整数时: A.找数字与序数的关系; B. 数字的符号规律,若为正负号交替,则用(-1)n或(-1)n-1表示符号;,【备考指导】,当所给的一组数字既有整数又有分数时: A.找数字与系数的关系:将整数写成分数,分别观察分子

2、、分母的规律; B.数字的符号方法同上“数字是整数”时. 将中A与B的规律结合起来.,2.代数式规律: 标序数(1,2,3,n); 找规律,观察: A.系数、代数式字母的指数与序数的关系; B.符号规律方法同上“数字是整数”时; 将中A与B的规律结合起来.,A.自然数列规律:0,1,2,3,n(n0); B.正整数列规律:1,2,3,,n-1,n(n1); C.奇数列规律:1,3,5,7,,2n-1(n1); D.偶数列规律:2,4,6,8,,2n(n1); E.正整数和:1+2+3+4+n = (n1); F.正整数平方:1,4,9,16,,n2(n1);,3.常见的数字规律:,G.正整数平

3、方加1:2,5,10,17,,n2+1 (n1); H.正整数平方减1:0,3,8,15,n2-1 (n1). I.每两个数字之间的差以1为单位递增:1,3,6,10, 15,21,28,, (n1).,例2 观察下列按顺序排列的等式: ,试猜想第n个等式(n为正整数):an=_.,【解析】,可观察等号右边两项的分子都为1,且第一个分数的分母为该项所在的序数,第二个分数的分母为该项所在的序数加2,故第n个:,【答案】,等式规律: 标序数(1,2,3,n); 找规律,观察:等式左右两边中各部分与序数之间的关系; 总结中的规律.,【备考指导】,【解析】,由表可知,每一行最后一个数是前面所有行数之和

4、;而每一行从第一个数开始向后 ,后一个数比前一个数多1,所以要求第10行第5个数,先求 第9行最后一个数,即1+2+3+ =45, 第10行的第1个数为46,第5个数为46+(5-1)=50.,【答案】50,标行数(1,2,3,n); 找规律,观察: A.每行的个数; B.相邻数据的变化; C.每行或每列的数字规律(参考例1的【备考指导】中“常见的数字规律”); 总结中的规律.,【备考指导】 数阵规律:,第二部分 热点题型攻略,题型一 规律探索题,类型二 图形规律,典例精讲,例1 如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7

5、个三角形,第(3)个图案有10个三角形,,依此规律,第n个图案有_个三角形(用含n的代数式表示).,【解析】第(1)个图案中小三角形的个数为4个,第(2)个图案中小三角形的个数为7个,第(3)个图案中小三角形的个数为10个,依此类推.,由以上分析可知,第n个图案中有3n+1个小三角形.,【答案】3n+1,标序数:按图号标序; 找规律: A.观察所给图形和第一个图(基础图),找出增加的单位图形部分; B.将增加的单位图形的数量用含序数的数学式子表示出; C.归纳出含有序数n的关系式; 代入所给图形中的某一个序号验证所归纳的关系式.,【备考指导】图形累加:,【解析】半圆的半径r =1,半圆弧长=,

6、第 2015秒点P 运动的路径长为: 2015, 2015 =10071,点P 位于第1008个半圆的中点上,且这个半圆在x轴的下方,此时点P的横坐标为:10082-1=2015,纵坐标为-1,点P(2015,-1) .,【答案】B,观察图形经过一个循环变化需要的次数,记为n; 用N(设问中给出的第N 次变化)除以n,当商b余m(0mn)时,第N次变化后对应的图形就是一个循环变化中第m次变化后对应的图形; 找出第m次变化后对应的图形即可得解.,【备考指导】图形循环变化:,【解析】B1C1B2C2B3C3,B1C1O =60,B1C1O = B2C2O =B3C3O =60,B1C1=1,则D1E1 = , B2C2 = ,则 D2E3 = , B3C3= ,以此类推,可得 BnCn= ,B2015C2015= ,即正 方形A2015B2015 C2015 D2015 的边长为 .,【答案】D,求出第一次变化前图形的边长(或周长); 计算第一次、第二次、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论