椭圆的标准方程(第一课时).ppt_第1页
椭圆的标准方程(第一课时).ppt_第2页
椭圆的标准方程(第一课时).ppt_第3页
椭圆的标准方程(第一课时).ppt_第4页
椭圆的标准方程(第一课时).ppt_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,第一课时,椭圆的标准方程,如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?,生活中的椭圆,一.问题情境, 动画演示:“神六”飞行,注意: 椭圆定义中容易遗漏的三处地方: (1) 必须在平面内. (2)两个定点-两点间距离确定 (3)绳长-轨迹上任意点到两定点距离和确定 思考:在同样的绳长下,两定点间距离较长,则所画出的 椭圆较扁(线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(圆) 由此可知,椭圆的形状与两定点间距离、绳长有关,1 椭圆定义: 平面内与两个定点的距离和等于常数(大于 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 ,二、复习

2、回顾:,PF1+PF2=2a (2a2c0, F1F2=2c),2.学生活动, 探讨建立平面直角坐标系的方案,建立平面直角坐标系通常遵循的原则:对称、“简洁”,方案一,解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).,设M(x, y)是椭圆上任意一 点,椭圆的焦距2c(c0),M 与F1和F2的距离的和等于正 常数2a (2a2c) ,则F1、F2的坐标分别是(c,0)、(c,0) .,3.建构数学,(问题:下面怎样化简?),由椭圆的定义得,限制条件:,代入坐标,1)椭圆的标准方程的推导,两边除以 得,由椭圆定义可知,总体印象:对称、简洁,“像”

3、直线方程的截距式,焦点在y轴:,焦点在x轴:,2)椭圆的标准方程,图 形,方 程,焦 点,F(c,0),F(0,c),a,b,c之间的关系,c2=a2-b2,MF1+MF2=2a (2a2c0),定 义,3)两类标准方程的对照表,注:,共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.,不同点:焦点在x轴的椭圆 项分母较大. 焦点在y轴的椭圆 项分母较大.,课堂练习:,1.口答:下列方程哪些表示椭圆?,若是,则判定其焦点在何轴? 并指明 ,写出焦点坐标.,?,例1、写出适合下列条件的椭圆的标准方程,(1) a =4,b=1,焦点在 x 轴上;

4、 (2) a =4,b=1,焦点在坐标轴上; (3) 两个焦点的坐标是( 0 ,-2)和( 0 ,2),并且经 过点P( -1.5 ,2.5).,解: 因为椭圆的焦点在y轴上, 设它的标准方程为, c=2,且 c2= a2 - b2, 4= a2 - b2 ,又椭圆经过点, ,联立可求得:,椭圆的标准方程为,(法一),或,(法二) 因为椭圆的焦点在y轴上,所以设它的 标准方程为,由椭圆的定义知,,所以所求椭圆的标准方程为,5、回顾小结,6、作业布置,求椭圆标准方程的方法,求美意识, 求简意识,前瞻意识,达标练习:,1、 已知椭圆的方程为: ,请填空: (1) a=_,b=_,c=_,焦点坐标为_,焦距等于_. (2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点, 并且CF1=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论