1.3 微分方程的向量场_第1页
1.3 微分方程的向量场_第2页
1.3 微分方程的向量场_第3页
1.3 微分方程的向量场_第4页
1.3 微分方程的向量场_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3 微分方程的向量场,一、 向量场,设一阶微分方程,满足解的存在唯一性定理的条件。,,满足,向量场对于求解微分方程的近似解和 研究微分方程的几何性质极为重要,因 为,可根据向量场的走向来近似求积分 曲线,同时也可根据向量场本身的性质 来研究解的性质。,它所确定的向量场中的一条曲线,该曲线所经过的,每一点都与向量场在这一点的方向相切。,的向量场和几条积分曲线。,解:用计算各点的斜率的方法手工在网格点上 画出向量场的方向可以得到向量场,但手工绘 图误差较大。我们可以用Maple 软件包来完成。,点的向量相重合。,Maple指令:,DEtoolsphaseportrait # 画向量场及积分曲线

2、 (diff(y(x),x)=-y(x),y(x), # 定义微分方程 x=-2.2, # 指定x范围 y(-2)=2,y(-2)=1,y(-2)=-2, # 给出3个初始值 dirgrid=17,17, # 定义网格密度 arrows=LINE, # 定义线段类型 axes=NORMAL; # 定义坐标系类型,所谓图解法就是不用微分方程解的具体表达式,直接根据右端函数的结构和向量场作出积分曲线的大致图形。 图解法只是定性的,只反映积分曲线的一部分主要特征。 该方法的思想却十分重要。因为能够用初等方法求解的方程极少,用图解法来分析积分曲线的性态对了解该方程所反映的实际现象的变化规律就有很重要的指导意义。,二、 积分曲线的图解法,对任意一个实数 c ,由方程,的等倾线为,拐点曲线:,得,则称它为拐点曲线。,解:由方程得,内容小结,微分方程的向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论