巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 数列an满足a1=, =1(nN*),则a10=( )ABCD2 已知e是自然对数的底数,函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,则下列不等式中成立的是( )Aa1bBab1C1abDb1a3 下列命题中的说法正确的是( )A命题“若x2=1,则x=1”的否命题为“若x2=1,则x1”B“x=1”是“x2+5x6=0”的必要不充分条件C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+10”D命题“在ABC中,若AB,则sinAsinB”的逆

2、否命题为真命题4 三个数a=0.52,b=log20.5,c=20.5之间的大小关系是( )AbacBacbCabcDbca5 ABC的三内角A,B,C所对边长分别是a,b,c,设向量,若,则角B的大小为( )ABCD6 已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是( )A(0,1)B(0,C(0,)D,1)7 设F1,F2分别是椭圆+=1(ab0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若F1PQ=60,|PF1|=|PQ|,则椭圆的离心率为( )ABCD8 已知数列an满足log3an+1=log3an+1(nN*),且a2+a4+a6=9,则

3、log(a5+a7+a9)的值是( )AB5C5D9 已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D310以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )ABCD11已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D312已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D6二、填空题13【2017-2018第一学期

4、东台安丰中学高三第一次月考】函数的单调递增区间为_14已知集合,则的元素个数是 .15设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件16若非零向量,满足|+|=|,则与所成角的大小为17给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是18设数列an的前n项和为Sn,已知数列Sn是首项和公比都是3的等比数列,

5、则an的通项公式an=三、解答题19甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望20如图,边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点()证明:AMPM; ()求点D到平面AMP的距离21已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3

6、(1)当a=2时,求不等式f(x)g(x)的解集;(2)设a,且当x,a时,f(x)g(x),求a的取值范围 22圆锥底面半径为,高为,其中有一个内接正方体,求这个内接正方体的棱长23已知函数(1)画出函数的图像,并根据图像写出函数的单调区间和值域;(2)根据图像求不等式的解集(写答案即可) 24在数列中,其中,()当时,求的值;()是否存在实数,使构成公差不为0的等差数列?证明你的结论;()当时,证明:存在,使得巴塘县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解: =1(nN*),=1,数列是等差数列,首项为=2,公差为1=2

7、(n1)=n1,an=1=a10=故选:C【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题2 【答案】A【解析】解:由f(x)=ex+x2=0得ex=2x,由g(x)=lnx+x2=0得lnx=2x,作出计算y=ex,y=lnx,y=2x的图象如图:函数f(x)=ex+x2的零点为a,函数g(x)=lnx+x2的零点为b,y=ex与y=2x的交点的横坐标为a,y=lnx与y=2x交点的横坐标为b,由图象知a1b,故选:A【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键3 【答案】D【解析】解:A命题“若x2=1,则x

8、=1”的否命题为“若x21,则x1”,故A错误,B由x2+5x6=0得x=1或x=6,即“x=1”是“x2+5x6=0”既不充分也不必要条件,故B错误,C命题“xR,使得x2+x+10”的否定是:“xR,均有x2+x+105,故C错误,D若AB,则ab,由正弦定理得sinAsinB,即命题“在ABC中,若AB,则sinAsinB”的为真命题则命题的逆否命题也成立,故D正确故选:D【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础4 【答案】A【解析】解:a=0.52=0.25,b=log20.5log21=0,c=20.520=1

9、,bac故选:A【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用5 【答案】B【解析】解:若,则(a+b)(sinBsinA)sinC(a+c)=0,由正弦定理可得:(a+b)(ba)c(a+c)=0,化为a2+c2b2=ac,cosB=,B(0,),B=,故选:B【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题6 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,=0,M点的轨迹是以原点O为圆心,半焦距c为半径的圆又M点总在椭圆内部,该圆内含于椭圆,即cb,c2b

10、2=a2c2e2=,0e故选:C【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答7 【答案】 D【解析】解:设|PF1|=t,|PF1|=|PQ|,F1PQ=60,|PQ|=t,|F1Q|=t,由F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,椭圆的离心率为:e=故选D8 【答案】B【解析】解:数列an满足log3an+1=log3an+1(nN*),an+1=3an0,数列an是等比数列,公比q=3又a2+a4+a6=9,

11、=a5+a7+a9=339=35,则log(a5+a7+a9)=5故选;B9 【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题10【答案】D【解析】解:因为以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P=,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比11【答案】C【解析】解:命题

12、“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C12【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大二、填空题13【答案】【解析】14【答案】【解析】试题分析:在平面直角坐标系中画出圆与抛物线的图形,可知

13、它们有个交点考点:集合的基本运算.15【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分16【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值17【

14、答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为18【答案】 【解析】解:数列Sn是首项和公比都是3的等比数列,Sn =3n故a1=s1=3,n2时,an=Sn sn1=3n3n1=23n1,故an=【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列

15、的前n项的和Sn与第n项an的关系,属于中档题三、解答题19【答案】 【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=P(X=0)=(1)(1)=;P(X=1)=;P(X=2)=X的分布列为:X 0 1 2PEX=0+1+2=【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型解题时要认真审题,仔细解答,注意概率知识的灵活运用20【答案】 【解析】()证明:取CD的中点E,连接PE、EM、EAPCD为正三角形PECD,PE=PDsinPDE

16、=2sin60=平面PCD平面ABCDPE平面ABCD四边形ABCD是矩形ADE、ECM、ABM均为直角三角形由勾股定理得EM=,AM=,AE=3EM2+AM2=AE2,AME=90AMPM()解:设D点到平面PAM的距离为d,连接DM,则VPADM=VDPAM而在RtPEM中,由勾股定理得PM=,即点D到平面PAM的距离为21【答案】 【解析】解:(1)由|2x1|+|2x+2|x+3,得:得x;得0x;得综上:不等式f(x)g(x)的解集为(2)a,x,a,f(x)=4x+a1由f(x)g(x)得:3x4a,即x依题意:,a(,a即a1a的取值范围是(,1 22【答案】【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可试题解析:过圆锥的顶点和正方体底面的一条对角线作圆锥的截面,得圆锥的轴截面,正方体对角面,如图所示设正方体棱长为,则,作于,则,即,即内接正方体棱长为考点:简单组合体的结构特征23【答案】(1)图象见答案,增区间:,减区间:,值域:;(2)。【解析】试题分析:(1)画函数的图象,分区间画图,当时,此时为二次函数,开口向下,配方得,可以画出该二次函数在的图象,当时,可以先画出函数的图象,然后再向下平移1个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论