版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、耒阳市民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1202 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,43 设是等比数列的前项和,则此数列的公比( )A-2或-1 B1或2 C.或2 D或-14 复数的虚部为( )A2B2iC2D2i5 若命题p:xR,x20,命题q:xR,x,则下列说法正确的是( )A命题pq是假命题B命题p(
2、q)是真命题C命题pq是真命题D命题p(q)是假命题6 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:70,90),90,110),100,130),130,150),估计该班级数学成绩的平均分等于( )A112B114C116D1207 若抛物线y2=2px的焦点与双曲线=1的右焦点重合,则p的值为( )A2B2C4D48 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D9 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )AB4CD210若复数的实部与虚
3、部相等,则实数等于( )(A) ( B ) (C) (D) 11下列图象中,不能作为函数y=f(x)的图象的是( )ABCD12若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A2tB2tC2tD2t二、填空题13在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是14【徐州市第三中学20172018学年度高三第一学期月考】函数的单调增区间是_15ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,则c的值为16已知圆O:x2+y2=1和双曲线C:=1(a0,b0)若对双
4、曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则=17如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想18设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为三、解答题19为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有
5、10名女性()根据已知条件完成下面的22列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计()将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率P(K2k)0.050.01k3.8416.635附:K2=20(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.21已知f
6、(x)=x2+ax+a(a2,xR),g(x)=ex,(x)=()当a=1时,求(x)的单调区间;()求(x)在x1,+)是递减的,求实数a的取值范围;()是否存在实数a,使(x)的极大值为3?若存在,求a的值;若不存在,请说明理由 22已知向量(+3)(75)且(4)(72),求向量,的夹角23在直角坐标系xOy中,直线l的参数方程为(t为参数)再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位在该极坐标系中圆C的方程为=4sin(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(2,1),求|MA|+|MB|的值24如图,在四
7、棱柱ABCDA1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,A1AD=若O为AD的中点,且CDA1O()求证:A1O平面ABCD;()线段BC上是否存在一点P,使得二面角DA1AP为?若存在,求出BP的长;不存在,说明理由耒阳市民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C2 【答案】C【解析】考点:茎叶图,频率分布直方图3 【答案】D【解析】试题分析:当公比时,成立.当时,都不等于,所以, ,故选D. 考点:等比数列的性质.4 【答案】C【解析】解:复数=1+
8、2i的虚部为2故选;C【点评】本题考查了复数的运算法则、虚部的定义,属于基础题5 【答案】 B【解析】解:xR,x20,即不等式x20有解,命题p是真命题;x0时,x无解,命题q是假命题;pq为真命题,pq是假命题,q是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及pq,pq,q的真假和p,q真假的关系6 【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=800.00520+1000.01520+1200.0220+1400.0120=114故选:B【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目7 【
9、答案】D【解析】解:双曲线=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),=2,p=4故选D【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题8 【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C9 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h=3故V=2故选C10【答案】C 【解析】 i,因为实部与虚部相等,所以2b12b,即b.故选C.11【答案】B【解析】解:根据函数
10、的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性12【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t
11、+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较强,属于中档题二、填空题13【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力14【答案】【解析】 ,所以增区间是15【答案】 【解析】解:ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60,b=2,由正弦定理可得:,解得:a=3,利用余弦定理:a2
12、=b2+c22bccosA,可得:9=4+c22c,即c22c5=0,解得:c=1+,或1(舍去)故答案为:【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题16【答案】1 【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(1,t),则B(1,t),C(1,t),D(1,t),由直线和圆相切的条件可得,t=1将A(1,1)代入双曲线方程,可得=1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题17【答案】18【答案】 【解析】解:
13、a是甲抛掷一枚骰子得到的点数,试验发生包含的事件数6,方程x2+ax+a=0 有两个不等实根,a24a0,解得a4,a是正整数,a=5,6,即满足条件的事件有2种结果,所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键三、解答题19【答案】 【解析】解:()由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成22列联表如下:非歌迷歌迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得:K2=3.030因为3.0303.841,所以我们没有95%的把握认为“歌迷”与性别有关()
14、由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为=(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)其中ai表示男性,i=1,2,3,bi表示女性,i=1,2由10个等可能的基本事件组成用A表示“任选2人中,至少有1个是女性”这一事件,则A=(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2) ,事件A由7个基本事件组成P(A)= 12【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发
15、生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型20【答案】(1)参数方程为,;(2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,所以参数方程为,直线的普通方程为.(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.考点:1.极坐标方程;2.参数方程.21【答案】 【解析】解:(I)当a=1时,
16、(x)=(x2+x+1)ex(x)=ex(x2+x)当(x)0时,0x1;当(x)0时,x1或x0(x)单调减区间为(,0),(1,+),单调增区间为(0,1);(II)(x)=exx2+(2a)x(x)在x1,+)是递减的,(x)0在x1,+)恒成立,x2+(2a)x0在x1,+)恒成立,2ax在x1,+)恒成立,2a1a1a2,1a2;(III)(x)=(2x+a)exex(x2+ax+a)=exx2+(2a)x令(x)=0,得x=0或x=2a:由表可知,(x)极大=(2a)=(4a)ea2设(a)=(4a)ea2,(a)=(3a)ea20,(a)在(,2)上是增函数,(a)(2)=23,
17、即(4a)ea23,不存在实数a,使(x)极大值为3 22【答案】 【解析】解:向量(+3)(75)且(4)(72),=0,+8=0,=,化为,代入=0,化为: +16cos2,=或【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题23【答案】 【解析】解:(1)方程=4sin的两边同时乘以,得2=4sin,将极坐标与直角坐标互化公式代入上式,整理得圆C的直角坐标方程为x2+y24y=0(2)由消去t,得直线l的普通方程为y=x+3,因为点M(2,1)在直线l上,可设l的标准参数方程为,代入圆C的方程中,得设A,B对应的参数分别为t1,t2,由韦达定理,得0,t1
18、t2=10,于是|MA|+|MB|=|t1|+|t2|=,即|MA|+|MB|=【点评】1极坐标方程化直角坐标方程,一般通过两边同时平方,两边同时乘以等方式,构造或凑配2,cos,sin,再利用互化公式转化常见互化公式有2=x2+y2,cos=x,sin=y,(x0)等2.参数方程化普通方程,关键是消参,常见消参方式有:代入法,两式相加、减,两式相乘、除,方程两边同时平方等3.运用参数方程解题时,应熟练参数方程中各量的含义,即过定点M0(x0,y0),且倾斜角为的直线的参数方程为,参数t表示以M0为起点,直线上任意一点M为终点的向量的数量,即当沿直线向上时,t=;当沿直线向下时,t=24【答案】 【解析】满分(13分)()证明:A1AD=,且AA1=2,AO=1,A1O=,(2分)+AD2=AA12,A1OAD(3分)又A1OCD,且CDAD=D,A1O平面ABCD(5分)()解:过O作OxAB,以O为原点,建立空间直角坐标系Oxyz(如图),则A(0,1,0),A1(0,0,),(6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南长沙市一中2026届高一下生物期末预测试题含解析
- 2026届安徽省示范中学培优联盟高一下生物期末监测试题含解析
- 2025年陕西省省考事业单位考试及答案
- 2025年人民日报公务员面试题库及答案
- 2025年医学类事业编遴选笔试真题及答案
- 2025年电气公司招聘笔试考试题及答案
- 2025年泰州职业技术学院单招职业倾向性考试题库带答案解析
- 2025年郑州升达经贸管理学院马克思主义基本原理概论期末考试模拟题带答案解析(夺冠)
- 2026年合肥共达职业技术学院单招职业技能测试题库附答案解析
- 2024年紫金县幼儿园教师招教考试备考题库及答案解析(夺冠)
- 七下语文《骆驼祥子》考点总结及练习题(附答案)
- 山东省济南市2025-2026年高三上第一次模拟考试历史+答案
- 初中九年级上一元二次方程计算练习题及答案详解B2
- 中国涉外律师人才研究报告2025
- 2026年生产管理岗入职性格测试题及答案
- 2026年bjt商务能力考试试题
- 老年住院患者非计划性拔管分析2026
- (2025)70周岁以上老年人换长久驾照三力测试题库(含参考答案)
- 2025年汽车驾驶员技师考试试题及答案含答案
- 观看煤矿警示教育片写心得体会
- 《2021节能保温规范大全》JGJ353-2017 焊接作业厂房供暖通风与空气调节设计规范
评论
0/150
提交评论