统计推断答案(打印版)_第1页
统计推断答案(打印版)_第2页
统计推断答案(打印版)_第3页
统计推断答案(打印版)_第4页
统计推断答案(打印版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Solutions Manual forStatistical Inference, Second EditionGeorge Casella University of FloridaRoger L. BergerNorth Carolina State University Damaris SantanaUniversity of Florida Second Edition3-13c. (i) h(x) = 1 I(x), c() = 0, w() = , w() = ,x 0x()12t1(x) = log(x), t2(x) = x.(ii) A line.xd. (i) h(x)

2、= C exp(x4)I(x), c() = exp(4) 1, -2, 5 a. In Exercise 3.34(a) w1() = 1and for a n(e, e ), w1() = 1 .2eb. EX = = , then = . Therefore h(x) = 1 I(x),x 0x 0, w1() = , w2() = , t1(x) = log(x), t2(x) = x.c. From (b) then (1, . . . , n, 1, . . . , n) = (1, . . . , n, 1 , . . . , n )3.37 The pdf (

3、1 )f ( (x) ) is symmetric about because, for any 0,o1 f .(+) . =1 f . . =1 f . . =1 f .() . . Thus, by Exercise 2.26b, is the median.3.38 P (X x) = P (Z + z + ) = P (Z z) by Theorem .39 First take = 0 and = 1.a. The pdf is symmetric about 0, so 0 must be the median. Verifying this, write 1 1

4、11.1 . .1.P (Z 0) =0 1+z2 dz =tan(z).=.02 0= 2 .b. P (Z 1) = 1 tan1(z). = 1 = 1 . By symmetry this is also equal to P (Z 1).1 . 24 .424Writing z = (x )/ establishes P (X ) = 1and P (X + ) = 1 .3.40 Let X f (x) have mean and variance 2. Let Z = X . ThenEZ =. 1 .E(X ) = 0andVarZ = Var. X . 1 .=2Var(X

5、) =. 1 .22VarX =2= 1.Then compute the pdf of Z, fZ (z) = fx(z + ) = fx(z + ) and use fZ (z) as the standardpdf.3.41 a. This is a special case of Exercise 3.42a.b. This is a special case of Exercise 3.42b.3.42 a. Let 1 2. Let X1 f (x 1) and X2 f (x 2). Let F (z) be the cdf corresponding tof (z) and l

6、et Z f (z).ThenF (x | 1)=P (X1 x)=P (Z + 1 x)=P (Z x 1)=F (x 1)F (x 2)=P (Z x 2)=P (Z + 2 x)=P (X2 x)=F (x | 2).3-14Solutions Manual for Statistical InferenceThe inequality is because x 2 x 1, and F is nondecreasing. To get strict inequality for some x, let (a, b be an interval of length 1 2 with P

7、(a 0.Let x = a + 1. ThenF (x | 1)=F (x 1)=F (a + 1 1)=F (a) 2. Let X1 f (x/1) and X2 f (x/2). Let F (z) be the cdf corresponding tof (z) and let Z f (z). Then, for x 0,F (x | 1)=P (X1 x)=P (1Z x)=P (Z x/1)=F (x/1)F (x/2)=P (Z x/2)=P (2Z x)=P (X2 x)=F (x | 2).The inequality is because x/2 x/1 (becaus

8、e x 0 and 1 2 0), and F is nondecreasing. For x 0, F (x | 1) = P (X1 x) = 0 = P (X2 x) = F (x | 2). Toget strict inequality for some x, let (a, b be an interval such that a 0, b/a = 1/2 andP (a 0. Let x = a1. ThenF (x | 1)=F (x/1)=F (a1/1)=F (a) 0, by Theorem 2.1.3. For 1 2,FY (y|1) = 1 FX. 1 . 1y.

9、1 FX. 1 . 2y.= FY (y|2)for all y, since FX (x|) is stochastically increasing and if 1 2, FX (x|2) FX (x|1) for all x. Similarly, FY (y|1) = 1 FX ( 1 |1) 2, FX (x|2) 2 and 1, 2 0 then 1 1 . Therefore1FX (x| 1 ) FX (x| 1 ) for all x and FX (x| 1 ) 2/9 = EX2/b2.Thus EX2/b2 is a better bound. But for b

10、= 2, E|X|/b = 1/Thus E|X|/b is a better bound.2 0.b.MX (t)=etxfX (x)dxa aetxfX (x)dxeta fX (x)dx=etaP (X a),where we use the fact that etx is decreasing in x for t 0.c. h(t, x) must be nonnegative.2123.46 For X uniform(0, 1), = 1and 2 = 1 , thus. 1k 1k . 2k . 1 12k k) = 1 P2 12 X 2 + 12=0k 3,For X e

11、xponential(), = and 2 = 2, thusP (|X | k) = 1 P ( k X + k) =. 1 + e(k+1) ek1k 1e(k+1)k 1.From Example 3.6.2, Chebychevs Inequality gives the bound P (|X | k) 1/k2.Comparison of probabilitiesku(0, 1)exactexp()exactChebychev.1.942.926100.5.711.61741.423.135821.44300.0651.33200.0498.25400.006

12、74.06251000.01So we see that Chebychevs Inequality is quite conservative.3.472P (|Z| t)=2P (Z t)=21tex2 /2dx2. 2 1+x2=ex /2dxt1+x2. 2 . 12x22 =ex /2dx+ ex /2dx. .t1+x2t1+x23-16Solutions Manual for Statistical Inference222To evaluate the second term, let u = x , dv = xex /2dx, v = ex /2, du = 1x , to

13、obtain x221+x2 x 2.1 x2(1+x2 )22t1 + x2ex /2dx=1 + x2(ex /2). .tt(1 + x2)2(ex /2)dx t21 x22Therefore,=1 + t2et /2 + t(1 + x2)2ex /2dx. 2 t t2 /2. 2 .1 1 x2 .x2 /2P (Z t)= 1 + t2 e+1 + x2 + (1 + x2)2edx2t. 2t=et /2 +. 2 .2. ex /2dx2 1 + t2. 2 t t2 /2.t(1 + x2)2 1 + t2 e3.48 For the negative binomialP

14、 (X = x + 1) =.r + x + 1 1.x + 1pr (1 p)x+1 =. r + x .x + 1(1 p)P (X = x).For the hypergeometric (M x)(kx+x+1)(x+1)if x k, x M , x M (N k)P (X=x)MP (X = x + 1) =( MN x+1)(kx 1)N(k)if x = M (N k) 10otherwise.3.49 a. 1 1x/E(g(X)(X ) =0g(x)(x ) () x edx.Let u = g(x), du = g(x), dv = (x )x1ex/ , v = xex

15、/ . Then 1. x/ . x/.Eg(X)(X ) = ()g(x)x e.+ .00g(x)x edx .Assuming g(x) to be differentiable, E|Xg(X)| u.4.12 One interpretation of “a stick is broken at random into three pieces” is this. Suppose the length of the stick is 1. Let X and Y denote the two points where the stick is broken. Let X and Y

16、both have uniform(0, 1) distributions, and assume X and Y are independent. Then the joint distribution of X and Y is uniform on the unit square. In order for the three pieces to form a triangle, the sum of the lengths of any two pieces must be greater than the length of the third. This will be true

17、if and only if the length of each piece is less than 1/2. To calculate the probability of this, we need to identify the sample points (x, y) such that the length of each piece is less than 1/2. If y x, this will be true if x 1/2, y x 1/2 and 1 y y, each piece will have length less than 1/2 if y 1/2,

18、 x y 1/2 and 1 x 0, then X Y . So for v = 1, 2, . . ., the joint pmf isfU,V (u, v)=P (U = u, V = v)=P (Y = u, X = u + v)=p(1 p)u+v1p(1 p)u1=p2(1 p)2u+v2.Second Edition4-154.45 a. We will compute the marginal of X. The calculation for Y is similar. Start with1fXY (x, y)=2X Y ,122. 1 . xX .2. xX . . y

19、Y . yY .exp 2(12)2XX+YYand compute1 1 2 2z+z2 )Y dz,fX (x)=fXY (x, y)dy = e 2(12 ) ( 2X Y ,12where we make the substitution z = yY , dy = Y dz, = xX . Now the part of theYXexponent involving 2 can be removed from the integral, and we complete the square in zto get2e 2(12 ) 1 22 22 2fX (x)=2X,12e 2(1

20、2 ) (z2z+ ) dz222 22 1 2e /2(1 )e /2(1 ) =e 2(12 ) (z)dz.2X ,12The integrand is the kernel of normal pdf with 2 = (1 2), and = , so it integratesto 2,12. Also note that e /2(1 )e /2(1 ) = e /2. Thus,222 2222e /2 1 1 xX 22 2 . .fX (x) =Xthe pdf of n(X , 2 ).b.2X,122,1= eX,2XfY |X (y|x) 1 . xX 2xXyYyY

21、 2 . X . 2.X .Y .+.Y .e12X Y 12=2(12 ) 1 1 2 22 (xX )X2X e.1 1. xX 22xX 2xXyYyY 2 . 2(12 )X . (1 ).X . 2.X .Y .+.Y .=2Y ,1e2 2 . .2 .11 2(12 ).2 . xX2xXyY+ yY=2Y ,1e2XXYY2 22 (12 .(yY ). X (xX ).11YY=21 2 e,Y , which is the pdf of n.(Y (Y /X )(x X ) , Y ,1 2.c. The mean is easy to check,E(aX + bY )

22、= aEX + bEY = aX + bY ,4-16Solutions Manual for Statistical Inferenceas is the variance,XVar(aX + bY ) = a2VarX + b2VarY + 2abCov(X, Y ) = a22Y+ b22+ 2abX Y .aTo show that aX + bY is normal we have to do a bivariate transform. One possibility is U = aX + bY , V = Y , then get fU,V (u, v) and show th

23、at fU (u) is normal. We will do this in the standard case. Make the indicated transformation and write x = 1 (u bv), y = v and=.obtaina.Then.|J | = .1/ab/a .1 01. 1112 2 .2 2(12 ) . a (ubv)a (ubv)+vfUV (u, v) =,e.2a12Now factor the exponent to get a square in u. The result is 1. b2 + 2ab + a2 . .u2.

24、 b + a . 2. 2(12)a2b2 + 2ab + a2 2b2 + 2ab + a2uv + v.Note that this is joint bivariate normal form since U = V = 0, 2 = 1, 2 = a2 + b2 + 2abandthus =Cov(U, V )U VE(aXY + bY 2)=U Vvua + b=,a2 + b2 + ab2 2222222a + ab + b (1 ) = 1 (1 )a (1 )a ua2 + b2 + 2ab = a2 + b2 + 2ab =2where a,12 = U ,12. We ca

25、n then writefUV (u, v) =1exp ., 1. u2uv,2 2 v2 .+,22U V12212UU VV4.46 a.which is in the exact form of a bivariate normal distribution. Thus, by part a), U is normal.EX=aX EZ1 + bX EZ2 + EcX=aX 0 + bX 0 + cX=cXVarX=a2 VarZ1 + b2 VarZ2 + VarcX=a2+ b2X XXXEY=aY 0 + bY 0 + cY=cYVarY=a2 VarZ1 + b2 VarZ2

26、+ VarcY=a2+ b2Y YYYCov(X, Y )=EXY EX EY=E(aX aY Z2 + bX bY Z2 + cX cY + aX bY Z1Z2 + aX cY Z1 + bX aY Z2Z112+ bX cY Z2 + cX aY Z1 + cX bY Z2) cX cY =aX aY + bX bY ,since EZ2 = EZ2 = 1, and expectations of other terms are all zero.12b. Simply plug the expressions for aX , bX , etc. into the equalitie

27、s in a) and simplify.c. Let D = aX bY aY bX = ,12X Y and solve for Z1 and Z2,bY (XcX ) bX (Y cY )Y (X X )+X (Y Y )Z1=DY (X X )+X (Y Y ),2(1+)X YZ2=,2(1.) X YSecond Edition4-17Then the Jacobian is. z1z1 .bY bXJ =x1 y .=DD.aX bY=aY bX 1 1 z2z2aYaXD2 D2= D =,xyDD12X Yand we have that X )+X (yY )2(Y (xX

28、 )+X (yY )211111 (Y (xe efX,Y (x, y)= 222(1+)2 222(1)2 2 ,X YX Y212X Y=(2X Y ,1 2)1 exp.1. x X .2.2(1 2)X2x X . y Y . y Y .2X+YY, x , y ,a bivariate normal pdf.d. Another solution isaX=X bX = ,(1 2)X aY=Y bY=0cX=XcY=Y .There are an infinite number of solutions. Write bX = ,2 a2 ,bY = ,2 a2 , andsubs

29、titute bX ,bY into aX aY = X Y . We getXXYY . . . .aX aY +2 a22 a2= X Y .XXYYSquare both sides and simplify to get(1 2)2 2= 2 a2 2X Y aX aY + 2 a2 .X YX YY XThis is an ellipse for = 1, a line for = 1. In either case there are an infinite number of points satisfying the equations.4.47 a. By definitio

30、n of Z, for z 0) + P (X z and XY 0)=P (X z and Y 0) + P (X z and Y 0)(since z 0)=P (X z)P (Y 0) + P (X z)P (Y 0)(independence)=P (X z)P (Y 0)(symmetry of Xand Y )=P (X z)(P (Y 0)=P (X z).By a similar argument, for z 0, we get P (Z z) = P (X z), and hence, P (Z z) =P (X z). Thus, Z X n(0, 1).b. By de

31、finition of Z, Z 0 either (i)X 0 or (ii)X 0 and Y 0. So Z andY always have the same sign, hence they cannot be bivariate normal.4-18Solutions Manual for Statistical Inference4.49 a.fX (x)= (af1(x)g1(y) + (1 a)f2(x)g2(y)dy=af1(x) g1(y)dy + (1 a)f2(x) g2(y)dy=af1(x) + (1 a)f2(x).fY (y)= (af1(x)g1(y) +

32、 (1 a)f2(x)g2(y)dx=ag1(y) f1(x)dx + (1 a)g2(y) f2(x)dx=ag1(y) + (1 a)g2(y).b. () If X and Y are independent then f (x, y) = fX (x)fY (y). Then,f (x, y) fX (x)fY (y)=af1(x)g1(y) + (1 a)f2(x)g2(y) af1(x) + (1 a)f2(x)ag1(y) + (1 a)g2(y)=a(1 a)f1(x)g1(y) f1(x)g2(y) f2(x)g1(y) + f2(x)g2(y)=a(1 a)f1(x) f2

33、(x)g1(y) g2(y)=0.Thus f1(x) f2(x)g1(y) g2(y) = 0 since 0 a 1.() if f1(x) f2(x)g1(y) g2(y) = 0 thenf1(x)g1(y) + f2(x)g2(y) = f1(x)g2(y) + f2(x)g1(y).ThereforefX (x)fY (y)=a2f1(x)g1(y) + a(1 a)f1(x)g2(y) + a(1 a)f2(x)g1(y) + (1 a)2f2(x)g2(y)=a2f1(x)g1(y) + a(1 a)f1(x)g2(y) + f2(x)g1(y) + (1 a)2f2(x)g2(y)=a2f1(x)g1(y) + a(1 a)f1(x)g1(y) + f2(x)g2(y) + (1 a)2f2(x)g2(y)=af1(x)g1(y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论