高考数学文一轮课标通用复习课件高手必备萃取高招专题二十八空间几何体的表面积和体积_第1页
高考数学文一轮课标通用复习课件高手必备萃取高招专题二十八空间几何体的表面积和体积_第2页
高考数学文一轮课标通用复习课件高手必备萃取高招专题二十八空间几何体的表面积和体积_第3页
高考数学文一轮课标通用复习课件高手必备萃取高招专题二十八空间几何体的表面积和体积_第4页
高考数学文一轮课标通用复习课件高手必备萃取高招专题二十八空间几何体的表面积和体积_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题二十八 空间几何体的表面积和体积,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62几何体的表面积 1.(2016课标,文7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是 ,则它的表面积是(),A.17B.18C.20D.28,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,2.(2015课标,文10)已知A,B是球O的球面上两点,AOB=90,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为() A.36B.64 C.144D.256,考点62,考点63,考点64,试做

2、真题,高手必备,萃取高招,对点精练,3.(2013课标,文15)已知H是球O的直径AB上一点,AHHB=12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为.,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,1.几何体的表面积 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环,它们的表面积等于侧面的面积与底面的面积之和. 2.常见几何体的侧面积与表面积的计算公式,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,典例导引1(1)某几何体的三视图如图所示,则该几何体的表面积为(),试

3、做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,(2)某三棱锥的三视图如图所示,该三棱锥的表面积是 (),试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,【答案】 (1)D(2)B(3)16,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,高招1求几何体表面积的解题规律,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点

4、63,考点64,1.(2017广西名校一摸)一个空间几何体的三视图如图所示,则该几何体的表面积为(),试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,2. (2017云南师大附中模拟)已知四面体PABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC平面ABC,则球O的表面积为() A.64B.65 C.66D.128,【答案】 B如图,D,E分别为BC,PA的中点,易知球心O在线段DE上. PB=PC=AB=AC,PDBC,ADBC,PD=AD. 又平面PBC平面ABC,平面PBC平面ABC=BC, PD平面ABC.,试做真题,高手必

5、备,萃取高招,对点精练,考点62,考点63,考点64,3. (2017辽宁葫芦岛模拟)如图,直三棱柱ABC-A1B1C1的底面为正三角形,E,F,G分别是BC,CC1,BB1的中点. (1)若BC=BB1,求证:BC1平面AEG; (2)若D为AB中点,CA1D=45,四棱锥C-A1B1BD的体积为 ,求三棱锥F-AEC的表面积.,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,(1)【证明】 如图,因为三棱柱ABC-A1B1C1是直三棱柱, 所以AEBB1. 又E是正三角形ABC的边BC的中点,所以AEBC. 又BCBB1=B,所以AE平面B1BCC1,则AEBC1.

6、连接B1C,易知四边形B1BCC1为正方形, 则BC1B1C.又GEB1C,则BC1GE. 因为GEAE=E,所以BC1平面AEG.,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,(2)【解】 因为ABC是正三角形,所以CDAB. 又三棱柱ABC-A1B1C1是直三棱柱,所以CDAA1. 所以CD平面A1ABB1,所以CDA1D. 设AB=a,由题可知,CA1D=45,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,考点63几何体的体积 1.(2015课标,文6) 九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内

7、角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有() A.14斛B.22斛C.36斛D.66斛,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,【答案】 CD是等边三角形ABC的边BC的中点, ADBC. 又ABC-A1B1C1为正三棱柱, AD平面BB1C1C. 又四边形BB1C1C为

8、矩形,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,【解】 (1)在平面ABCD内,因为BAD=ABC=90,所以BCAD. 又BC平面PAD,AD平面PAD, 故BC平面PAD. (2)取AD的中点M,连接PM,CM. 由AB=BC= AD及BCAD,ABC=90得四边形ABCM为正方形,则CMAD. 因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD平面ABCD=AD, 所以PMAD,PM底面ABCD. 因为CM底面ABCD,所以PMCM.,透析真题,高手必备,萃取高招

9、,对点精练,考点62,考点63,考点64,试做真题,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,4. (2017课标,文19)如图,四面体ABCD中,ABC是正三角形,AD=CD. (1)证明:ACBD; (2)已知ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.,透析真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,【解】 (1)取AC的中点O,连接DO,BO. 因为AD=CD,所以ACDO. 又由于ABC是正三角形,所以ACBO. 从而AC平面DOB,故ACBD

10、. (2)连接EO.由(1)及题设知ADC=90,所以DO=AO. 在RtAOB中,BO2+AO2=AB2. 又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故DOB=90. 由题设知AEC为直角三角形,所以EO= AC. 又ABC是正三角形,且AB=BD,所以EO= BD. 故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的 ,四面体ABCE的体积为四面体ABCD的体积的 ,即四面体ABCE与四面体ACDE的体积之比为11.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,5.(2016课标,文18) 如图,已知正三棱锥P-A

11、BC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G. (1)证明:G是AB的中点; (2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,【评分细则】 【解法一】 (官方答案) (1)P在平面ABC内的正投影为D,ABPD. 1分 D在平面PAB内的正投影为E,ABDE. 2分 AB平面PED, 3分 故ABPG. 4分 又PA=PB, 5分 从而G是AB的中点. 6分 (2)在平面PAB内,过点E作

12、PB的平行线交PA于点F,F即为E在平面PAC内的正投影. 7分 理由如下: 由已知可得PBPA,PBPC, 又EFPB,所以EFPA,EFPC. 因此EF平面PAC,即点F为E在平面PAC内的正投影. 9分,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,(2)在(1)中,推理有错误时,扣掉相应部分的分值.前面全部错误,后面出现“PA=PB,G为AB的中点”可给1分.若只有PA=PB,也可以给1分.只有结论“G为AB的中点”不给分. (3)在(1)中,若指出“PE为角APB的平分线

13、”也给1分. (4)在(2)中,只要作出EF,且点F在PA上,没说明也给1分,说明错误不给分. (5)在(2)中的理由说明中,不完整但有正确的部分推理酌情给分. (6)在(2)中说明理由中,若出现 及等价结论,应给出这部分的相应分值.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,【解法二】 (1)连接CD,GD. PCPA,PCPB, PC平面PAB. D在平面PAB内的正投影为E, DE平面PAB. DEPC. DE,PC确定平面PEDC. 易知C,G,D三点共线.2分 PCAB,PDAB, AB平面PGC.3分 ABPG.4分 PA=PB,5分 G为AB

14、的中点.6分,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,(2)同解法一. 说明:在上述证法中,直接连C,D,G,默认在一条直线上,其余推理正确,满分为4分.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,柱体、锥体、台体、球体的体积公式,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,

15、考点64,典例导引2(1)(2017河南九校模拟)在直三棱柱ABC-A1B1C1中,M,N分别为棱A1B1,A1C1的中点,则平面BMNC将三棱柱分成的两部分的体积比为() A.87B.85C.75D.74 (2)(2017河北唐山期末统考)如图,四棱锥P-ABCD中, PA底面ABCD, ADBC,BC=2AD=4,AB=CD, ABC=60,N为线段PC上一点,CN=3NP,M为AD的中点. 证明:MN平面PAB; 求点N到平面PAB的距离. (3)(2017广东汕头期末统考)如图,正四面体SABC 的侧面积为48 ,O为底面正三角形ABC的中心. 求证:SABC; 求点O到侧面SBC的距

16、离.,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,【答案】 C,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,(3)【证明】 如图所示,D为BC的中点,连接AD,SD, ABC是等边三角形,D是BC的中点,ADBC. SBC是等边三角形,D是BC的中点,SDBC. ADSD=D,AD,SD平面SAD,BC平面SAD. SA平面SAD,SABC.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高

17、手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,高招2求几何体的体积的四大方法,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,

18、萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,高招3解决几何体体积最值问题的方法,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,1.(2017河北衡水中学五调)九章算术是我国数学史上堪与欧几里得几何原本相媲美的数学名著.其第五卷商功中有如下问题:“今有圆堡,周四丈八尺,高一丈一尺,问积几何?”这里所说的圆堡就是圆柱体,其底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若取3,估算该圆堡的体积为(1

19、丈=10尺)() A.1 998立方尺B.2 012立方尺 C.2 112立方尺D.2 324立方尺 【答案】 C由底面半径为r,则2r=48, 又=3,所以r=8. 所以该圆堡的体积为V=88311=2 112(立方尺),故选C.,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,2.(2017吉林长春质检) 已知四棱锥P-ABCD中,底面四边形ABCD为矩形,PA底面ABCD,PA=BC=1,AB=2,M为PC的中点. (1)在图中作出平面ADM与PB的交点N,并指出点N所在位置(不要求给出理由); (2)求平面ADM将四棱锥P-ABCD分

20、成的上下两部分的体积比.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,3.(2017广东佛山质检)如图,四棱锥P-ABCD中,PAD为正三角形, ABCD且AB=2CD,BAD=90,PACD,E为棱PB的中点. (1)求证:平面PAB平面CDE; (2)若AD=CD=2,求点P到平面ADE的距离.,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,(1)【证明】 取AP中点F,连接EF,DF, E为PB中点, 四边形CDFE为平行四边形. DFCE

21、. 又PAD为正三角形, PADF,从而PACE, 又PACD,CDCE=C,PA平面CDE. 又PA平面PAB,平面PAB平面CDE.,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,透析真题,试做真题,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,考点64组合体的“接”“切”的综合问题 1.(2017课标,文9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(),【答案】 B由题意可知球心即为圆柱体的中心,画出圆柱的轴截面如图所示,则,试做

22、真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,3.(2016课标,文4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() 【答案】 A设正方体的棱长为a,由a3=8,得a=2. 由题意可知,正方体的体对角线为球的直径,4.(2017课标,文15)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为_. 【答案】 14 【解析】 由题意可知长方体的体对角线长等于其外接球O的直径2R,即 ,所以球O的表面积S=4R2=14.,试做真题,高手必备,萃取高招,对点精练,考点62,

23、考点63,考点64,5.(2017课标,文16)已知三棱锥S -ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA平面SCB,SA=AC,SB=BC,三棱锥S -ABC的体积为9,则球O的表面积为_. 【答案】 36 【解析】 取SC的中点O,连接OA,OB. 因为SA=AC,SB=BC,所以OASC,OBSC. 因为平面SAC平面SBC,且OA平面SAC, 所以OA平面SBC.设OA=r, 所以球O的表面积为4r2=36.,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,试做真题,高手必备,萃取高招,对点精练,考点62,考点63,考点64,典例导引4(1)若圆锥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论