




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 二次函数,回顾与思考(一),本课知识小结,二次函数,定义,图象,相关概念,抛物线,对称轴,顶点,性质和图象,开口方向、对称轴、顶点坐标,增减性,解析式的确定,三点式,顶点式,交点式,二次函数的定义,思索归纳,定义:一般地,形如y=ax+bx+c(a,b,c是常数,a 0)的函数叫做x的二次函数.,提示: (1)关于x的代数式一定是整式,a,b,c为常数,且 a0.,(2)等式的右边最高次数为2,可以没有一次项 和常数项,但不能没有二次项.,1.下列函数中,哪些是二次函数?,怎么判断?,(1)y=3(x-1)+1;,(3) s=3-2t.,(5)y=(x+3)-x.,随堂练习,(是),(
2、是),(不是),(不是),(不是),(一)形如y = ax 2(a0) 的二次函数,向上,向下,x=0,(0,0),向上,向下,X=0,(0,k),二次函数的图象和性质,(二)形如y = ax 2+c(a0) 的二次函数,向上,向下,x=h,(h,0),(三)形如y = a (x-h) 2 ( a0 ) 的二次函数,(四) 形如y = a (x-h) 2 +k (a 0) 的二次函数,(h,k),向上,向下,x=h,1、平移关系,2、顶点变化,当h0时,向右平移,当h0时,向左平移,y=ax2,=a(xh)2,(h,0),(0,0),当k0时,向上平移,当k0时,向下平移,y=a(xh)2+k
3、,(h,k),二次函数y=a(x-h)+k与y=ax的关系,观察y=x2与y=x2-6x+7的函数图象,说说y=x2-6x+7的图象是怎样由y=x2的图象平移得到的?,y=x2-6x+7,=x2-6x+9-2,=(x-3)2-2,a0,a0,开口方向,向上,向下,顶点,对称轴,增减性,最 值,当 时,当 时,二次函数y=ax2+bx+c(a0)的图象和性质,巩固练习1: (1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;,(2)已知y = - nx 2 (n0) , 则图象 ( )(填“可能”或“不可能”)过点A(-2,3)。,上,y轴,(0,0),一、二,不可
4、能,(3)抛物线y =x 2+3的开口向 ,对称轴是 ,顶点坐标是 ,是由抛物线y =x 2向 平移 个单位得到的;,上,x=0,(0,3),上,3,(4)已知(如图)抛物线y = ax 2+k的图象,则a 0,k 0;若图象过A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y = 。,0.5,-2,0.5x 2-2,(5)抛物线 y = 2 (x -1/2 ) 2+1 的开口向 , 对称轴 , 顶点坐标是 (6)若抛物线y = a (x+m) 2+n开口向下,顶点在第四象限,则a 0, m 0, n 0。,上,x=1/2,(1/2,1),1.若无论x取何实数,二次函数
5、y=ax2+bx+c的值总为负,那么a、c应满足的条件是( ) A.a0且b2-4ac0 B.a0且b2-4ac0 C.a0且b2-4ac0 D.a 0且b2-4ac 0,2.已知二次函数y=ax2+bx+c的图象如图所示,请根据图象判断下列各式的符号:a 0 ,b 0, c 0 , 0 , a-b+c 0,a+b+c 0,=,C,3.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( ),4.已知二次函数y=ax2+bx+c中a0,b0,c0,请画一个能反映这样特征的二次函数草图.,C,2、已知抛物线顶点坐标(h, k),通常设抛物线解析式为_,1、已知抛物线上的三点,通
6、常设解析式为_,y=ax2+bx+c(a0),y=a(x-h)2+k(a0),二次函数解析式的三种表示方式,1、二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求a、b、c。,解:二次函数的最大值是2 抛物线的顶点纵坐标为2 又抛物线的顶点在直线y=x+1上 当y=2时,x=1 顶点坐标为( 1 , 2) 设二次函数的解析式为y=a(x-1)2+2 又图象经过点(3,-6) -6=a (3-1)2+2 a=-2 二次函数的解析式为y=-2(x-1)2+2 即: y=-2x2+4x,2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下 平
7、移4个单位,再向左平移5个单位所得到的新 抛物线的顶点是(-2,0),求原抛物线的解析式.,分析:,(1)由a+b+c=0可知,原抛物线的图象经过(1,0),(2) 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线,答案:y=-x2+6x-5,3、已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1,ACB=90,求抛物线解析式。,解: 点A在正半轴,OA=4, 点A(4,0) 点B在负半轴, OB=1, 点B(-1,0) 又 ACB=90 OC2=OAOB=4 OC=2,点C(0,-2) 抛物线的解析式为,4、已知二次函数y=
8、ax2-5x+c的图象如图。,(1)当x为何值时,y随x的增大而增大?,(2)当x为何值时,y0?,(3)求它的解析式和顶点坐标。,方法1:解:如图,设矩形的一边AB=x m,那么另一边BC=(15-x) m,面积为S m2,则,例3:如图,假设篱笆(虚线部分)的长度是15m,如何围篱笆才能使其所围成矩形的面积最大?,最大面积问题,解:设旅行团人数为x人,营业额为y元,则 y,例1:某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?,答:当旅行社的人数是55人时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 萧山区绿植租赁管理办法
- 融媒体中心素材管理办法
- 衡水市小区收费管理办法
- 装修管理办法规定第六条
- 西安市大气分类管理办法
- 规范出让金管理暂行办法
- 证券业务员管理办法规定
- 课堂教学管理办法教务处
- 财政部现金清算管理办法
- 贵州省危险房屋管理办法
- GB 28755-2012简易升降机安全规程
- FZ/T 43022-2011莨绸工艺饰品
- 2023年南开经济学考研真题
- 糖化简介0623课件
- DB3701-T 29-2022附件:智慧中药房建设与运行规范
- 大专毕业论文3000字格式12篇
- 皮部经筋推拿技术
- DBJ46-048-2018 海南省建筑工程防水技术标准
- 房地产汤臣楼书
- 全国行政区域身份证代码表(EXCEL版)
- 冰山模型提出者麦克利兰教授6族胜任力分析模型
评论
0/150
提交评论