东风300贯通式驱动桥及轮边减速器设计_第1页
东风300贯通式驱动桥及轮边减速器设计_第2页
东风300贯通式驱动桥及轮边减速器设计_第3页
东风300贯通式驱动桥及轮边减速器设计_第4页
东风300贯通式驱动桥及轮边减速器设计_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、本科学生毕业设计东风300贯通式驱动桥及轮边减速器设计 院系名称: 汽车与交通工程学院 专业班级: 学生姓名: 指导教师: 职 称: 黑 龙 江 工 程 学 院二一一年六月The Graduation Design for Bachelors DegreeDesign of Transfixion Type Driving Axle and Wheel Edges ReducerCandidate: Specialty: Class: Supervisor: Heilongjiang Institute of Technology2011-06Harbin摘 要汽车驱动桥是汽车的主要部件之一,

2、其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能:同时,驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力,横向力及其力矩。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。本文认真地分析参考了天龙重卡300双驱动桥,在论述汽车驱动桥运行机理的基础上,提练出了在驱动桥设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等三大关键技术;阐述了汽车驱动桥的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了重型卡车驱

3、动桥结构形式、布置方法、主减速器、差速器、半轴、桥壳及轮边减速器的结构型式;并对制动器以及主要零部件进行了强度校核,完善了驱动桥的整体设计。通过本课题的研究,开发设计出适用于装置大马力发动机重型货车的双级驱动桥产品,确保设计的重型卡车驱动桥经济、实用、安全、可靠。关键字:贯通轴;驱动桥;主减速器;差速器;轮边减速器ABSTRACTDrive axle is one of the most important parts of automobile. The function is to increase the torque from drive shaft or from transmiss

4、ion directly, and then distribute it to left and right wheels which have the differential ability automobile needed when driving. And the drive axle has to support the vertical force, longitudinal force, horizontal force and their moments between road and frame or body. Its quality and performance w

5、ill affect the security, economic, comfortably and reliability.This article analyzes and refers to the drive axle of Tianlongtruck and the 300 drive axle of Hyundai seriously. Through the study of this topic, we can design the single driving axle devices that apply to the heavy truck with high-power

6、ed engine, and make sure the drive axle we design of heavy truck economic, practical, safe and reliable. On talking about the running principal of driving axle ,the three key techno ledge about vehicle traveling on the ride and through, and noise reduction technology applications and the standardiza

7、tion of parts, components of the universal, Products such as the serialization that we should master to meet, it describes and has a systematic analysis on the basic principles of vehicle drive axle.According to the design principles and analysis and comparison of economy, application, comfortably,

8、safety and reliability , the heavy truck drive axle structure, layout ways, and the final drive assembly, differential assembly, the bridge case and axle structure can be determined; and the strength checking of brake parts, as well as major components improves overall design of the driving axle.Thr

9、ough the study of this topic, we can design the single drive axle devices that apply to the heavy truck with high-powered engine, and make sure the drive axle we design of heavy truck economic, practical, safe and reliable.Keywords: Heavy truck;Drive axle;Final drive;Differential; wheel edges reduce

10、r目 录摘要.Abstract.第1章 绪论11.1选题的背景11.2目的及意义11.3设计路线和设计内容2第2章 总体方案设计.42.1驱动桥设计应满足的基本要求42.2驱动桥结构型式的选择42.3主减速器结构型式的选择52.4半轴的选择52.5本章小结5第3章 贯通桥主减速器设计63.1主减速器的结构型式63.1.1主减速器齿轮类型.63.1.2主减速器齿轮的支承方案.83.1.3主减速器减速型式.123.2主减速基本参数选择和计算载荷的确定.133.2.1主减速比确定.133.2.2主减速器齿轮计算载荷确定.153.2.3主减速器齿轮几本参数的选择.173.3主减速器的几何尺寸计算.23

11、3.4主减速器齿轮的强度计算.293.5减速器轴承的计算.343.5.1减速器计算转矩的确定.343.5.2齿轮受力形式.353.5.3锥齿轮受力形式.373.6主减速齿轮材料及热处理.423.7主减速器齿轮润滑.433.8本章小结.43第4章 差速器设计444.1差速器结构型式的选择.444.2 对称式圆锥行星齿轮差速器原理.464.3对称式圆锥行星齿轮差速器结构.474.4对称式圆锥行星齿轮差速器结构设计.474.4.1差速器基本参数选择.484.4.2差速器锥齿轮几何尺寸计算.514.4.3差速器齿轮强度计算.524.5差速器齿轮材料.534.6本章小结.54第5章 半轴及贯通轴设计.5

12、55.1 概述.555.2全浮式半轴的设计与计算.585.2.1半轴计算载荷的确定.585.2.2半轴杆部直径的选择.595.2.3半轴强度校核.595.2.4 花键轴的强度计算605.3贯通轴的设计与计算.615.3.1贯通轴计算载荷的确定.615.3.2贯通轴杆部直径的选择.625.3.3贯通轴强度校核.625.4半轴材料与热处理.625.5本章小结.63第6章 轮边减速器设计.646.1概述.646.2轮边减速器型式选择.646.3轮边减速器各参数的选择.67 6.4轮边减速器各齿轮强度校核.676.4.1疲劳强度校核.676.4.2齿轮弯曲强度校核.686.5本章小结.69结论.70参

13、考文献.71致谢.72附录.73 第1章 绪 论1.1 选题的背景2010年中国重卡轮边减速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励重卡轮边减速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对重卡轮边减速器行业的关注越来越密切,这使得重卡轮边减速器行业的发展需求增大。为了提高汽车行驶平顺性和通过性,现在汽车的驱动桥也在不断的改进。与独立悬架相配合的断开式驱动桥相对与非独立悬架配合的整体式驱动桥在平顺性和通过性方面都得到改进。对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这

14、就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油

15、的措施之一。所以设计新型的驱动桥成为新的课题。1.2 目的及意义为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有44、66、88等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对88汽车来说,这种非贯通式驱动桥就更难于布置了。为了解决上述问题,现代多桥驱动汽车都是采用贯通式驱动桥的布置形式

16、。1.3 设计路线和设计内容本课题的设计思路可分为以下几点:首先选择初始方案,东风300属于重型货车,采用后桥驱动附轮边减速器,所以设计的驱动桥结构需要符合重型货车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸。主减速采用双级减速,主要是因为,贯通式的减速器,如果主减速器做成一级,又不能采取涡轮蜗杆传动,会引起贯通轴与齿轮轴的干涉。轮边减速器一般为双级减速驱动桥中安装在轮毂中间或附近的第二级减速器采用轮边减速器可以使中间主减速器的外形尺寸减小,保证车辆具有足够的离地间隙,由于轮边是最后的一级减速,其前面的半轴差速器及主减速器的从动轮等零件的尺寸都可以减小,由于

17、采用轮边减速器的驱动桥结构相对较复杂成本较高,只有当驱动桥总减速比大于12的工程机械、重型车和对离地间隙有特殊要求的越野车才推荐采用轮边减速器。在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变型)、制造和维修,都带来方便。驱动桥的结构形式有多种,基本形式有三种如下: (1)中央单

18、级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式, 在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承, 有差速锁装置供选用。 (2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高, 桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比

19、时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用, 锥齿轮有2个规格。由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。 (3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。在贯通式驱动桥的布置中,各桥的传动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己的传动轴与分

20、动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥的动力,是经分动器并贯通中间桥而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计(如汽车的变型)、制造和维修,都带来方便。第2章 总体方案的确定随着科技的发展,汽车行业也越来越被重视,重型汽车的工作条件也越来越恶劣。近年来大多数重型汽车都向大功率和大扭矩方向发展,主要采取贯通式两级减速的驱 动桥,以满足恶劣的工作环境。2.1驱动桥设计应满足的基本要求驱动桥是汽车传动系统中主要总成之一。驱动桥的设计是否合理直接关系到汽车使

21、用性能的好环。因此,设计中要保证:(1)所选择的主减速比应能满足汽车在给定条件下具有最佳的动力性和燃料经济性;(2)差速器在保证左、右驱动车轮能以汽车运动学所要求的差速滚动外并能将转矩平稳而连续不断(无脉动)地传递给左右驱动车轮;(3)当左、右驱动车轮与地面的附着系数不同时,应能充分地利用汽车的牵引力;(4)能承受和传递路面和车架或车厢间的铅垂力,纵向力和横向力,以及驱动时的反作用力和制动时的制动力矩;(5)驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车的平顺性;(6)轮廓尺寸不大以便于汽车的总体布置并与所要求的驱动桥离

22、地间隙相适应;(7)齿轮与其他传动机件工作平稳、无噪声;(8)驱动桥总成及零部件的设计应能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求;(9)在各种载荷及转速工况下有高的传动效率;(10)结构简单、维修方便,机件工艺性好,制造容易。2.2驱动桥的结构型式选择在贯通式驱动桥的布置中,各桥的驱动轴布置在同一纵向铅垂平面内,并且各驱动桥不是分别用自己传动轴与分动器直接联接,而是位于分动器前面的或后面的各相邻两桥的传动轴,是串联布置的。汽车前后两端的驱动桥(第一、第四桥)的动力,是经分动器并贯通中间桥(分别穿过第二,第三桥)而传递的。其优点是,不仅减少了传动轴的数量,而且提高了各驱

23、动桥零件的相互通用性,并且简化了结构、减小了体积和质量。这对于汽车的设计、制造和维修、都带来方便。2.3主减速的结构型式选择 (1)主减速器齿轮类型选择 选择双曲面齿轮,目的是降低质心,相同尺寸下承载能力大,传动平稳。在双级主减速器中,通常还要加一对圆柱齿轮或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。 (2)主减速器主从动齿轮的支撑形式选择 主、从动齿轮的支撑形式,选择骑马式,相对于悬臂式,刚度大,载荷能力强。 (4)主减速器的减速型式选择 主减速器设置成了两级减速,主要是因为,贯通式的减速器,如果主减速器做成一级,又不能采取涡轮蜗杆传动,会引起贯通

24、轴与齿轮轴的干涉。 (5)主减速的调整 主减速器的调整是通过轴承预紧,锥齿轮啮合2.4半轴的选择 半轴制成实心轴,利用全浮式支撑,目的是为了使半轴只承受转矩,反力和弯矩由桥壳以及差速器壳承受。2.5本章小结 本章通过对驱动桥设计要求的分析,确定了总体方案,贯通式双级减速驱动桥,其中,对驱动桥的结构型式和主减速器的结构型式的分析,还有半轴的选择,分别确定各自的型式,做一个总体方案的确定。第3章 贯通桥主减速器设计3.1 主减速器的结构型式 主减速器的结构型式,主要是根据齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而已。3.1.1 主减速器的齿轮类型主减速器的齿轮有弧齿锥齿轮、双曲面齿

25、轮、圆柱齿轮和涡轮蜗杆等形式。在现代汽车的驱动桥上,主减速器采用得最广泛的是“格里森”制或“奥利康”制的螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。见图(3.1)(a)螺旋锥齿轮 (b)双曲面齿轮 (c)圆柱齿轮传动 (d)蜗杆传动图3.1 主减速器的几种齿轮类型(a)螺旋锥齿轮其主、从动齿轮轴线相交于一点。交角可以是任意的,但在绝大多数的汽车驱动桥上,主减速齿轮副都是采用90交角的布置。由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,因此,螺旋锥齿轮能承受大的负荷。加之其轮齿不是

26、在齿的全长上同时啮合,而是逐渐地由齿的一端连续而平稳地转向另端,使得其工作平稳,即使在高速运转时,噪声和振动也是很小的。 (b)双曲面齿轮双曲面齿轮如图3.1(b)所示,其主、从动齿轮的轴线不相交而呈空间交叉。其空间交叉角(即将一轴线平移,使之与另一轴线相交的交角)也都是采用90。主动轴相对于从动齿轮轴有向上或向下的偏移,称为上偏置或下偏置。这个偏移量称为双曲面齿轮的偏移距,如图3.1所示。当偏移距大到一定程度时,可使一个齿轮轴从另一个齿轮轴旁通过。这样就能在每个齿轮的两边布置尺寸紧凄的支承。这对于增强支承刚度、保证轮齿正确啮合从而提高齿轮寿命大有好处。双曲面齿轮的偏移距使得其主动齿轮的螺旋角

27、大于从动齿轮的螺旋角。因此,双曲面传动齿轮副的法向模数或法向周节虽相等,但端面模数或端面周节是不等的。主动齿轮的端面模数或端面周节大于从动齿轮的。这一情况就使得双曲面齿轮传动的主动齿轮比相应的螺旋锥齿轮传动的主动齿轮有更大的直径和更好的强度和刚度。其增大的程度与偏移距的大小有关。另外,由于双曲面传动的主动齿轮的直径及螺旋角都较大,所以相啮合齿轮的当量曲率半径较相应的螺旋锥齿轮当量曲率半径为大,从而使齿面间的接触应力降低。随偏移距的不同,双曲面齿轮与接触应力相当的螺旋锥齿轮比较,负荷可提高至175。双曲面主动齿轮的螺旋角较大,则不产生根切的最少齿数可减少,所以可选用较少的齿数,这有利于大传动比传

28、动。当要求传动比大而轮廓尺寸又有限时,采用双曲面齿轮更为合理。因为如果保持两种传动的主动齿轮直径一样,则双曲面从动齿轮的直径比螺旋锥齿轮的要小,这对于主减速比的传动有其优越性。当传动比小于2时,双曲面主动齿轮相对于螺旋锥齿轮主动齿轮就显得过大,这时选用螺旋锥齿轮更合理,因为后者具有较大的差速器可利用空间。此外,双曲面齿轮传动还具有沿齿长方向的纵向滑动。这种滑动有利于磨合,促使齿轮副沿整个齿面都能较好的啮合,因为更促使其工作平稳和无噪声。但双曲面齿轮的纵向滑动产生较多的热量,使接触点升高,因而需要专门的双曲面齿轮油来润滑,且传动效率比螺旋锥齿轮略低,达96。其传动效率与偏移距有关,特别是与所传递

29、的负荷大小及传动比有关。负荷大时效率高。两种齿轮都在同样的机床加工,加工成本基本相同。然而双曲面传动的小齿轮较大,所以刀盘顶距较大,因为刀刃寿命较长。由于双曲面主动齿轮螺旋角的增大,还导致其进入啮合的平均齿数要比螺旋锥齿轮相应的齿数多,因而双曲面齿轮传动比螺旋锥齿轮传动工作得更加平稳、无噪声,强度也高。双曲面齿轮的偏移距还给汽车的总布置带来方便。(c)圆柱齿轮传动一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿车驱动桥,在此不采用。(d)蜗杆传动与锥齿传动相比,蜗杆传动有如下优点:(1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7);(2)在任何转速下使用均能工作得非常平

30、稳且无噪声;(3)便于汽车的总布置及贯通式多桥驱动的布置;(4)能传递大的载荷,使用寿命长。但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。在此不采用。由于本车的主减速器传动比大于5,且采用双曲面齿轮可以增大离地间隙,降低质心,相同尺寸下承载能力大,传动平稳。综上所述各种齿轮类型的优缺点,本文设计的东风300主减速器采用双曲面齿轮。3.1.2 主减速器主从动锥齿轮的支承方案在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。1、主减速器主动锥齿轮的支承型式及安置方法现在汽车

31、主减速器主动锥齿轮的支承型式有以下两种:(1)悬臂式如图3.2(a)所示,齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离b齿轮齿面宽中点的悬臂长度a大两倍以上,同时尺寸b应比齿轮节圆直径的70%还大,并使齿轮轴径大于或至小等于悬臂长a。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度a和增大支承间的距离b,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以使b拉长、a缩短,从而增强支承刚度。这样也便于结构布置、轴承预紧度的调整及轴承润滑。应注意,对圆锥滚子轴承来说,由于润滑油只能从圆锥滚子的小端在离心力作用下流向大端,因此在壳体上应有通入两轴承间的

32、进油道及使润滑油返回壳体的回油道。另外,为了拆装方便起见,应使主动锥齿轮后轴承(即紧靠齿轮大端的轴承)的支承轴径大于其前轴承(即位于驱动桥前部的轴承)的支承轴径,或名义尺寸虽同但公差有别。支承刚度也随轴承与轴及轴承与座孔之间的配合进度的增加而增大。(2)骑马式如图3.2(b)所示,齿轮前、后两端的轴颈均以轴承支承,故又称两端支承式。骑马式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式支承的1/30以下而主动锥齿轮后轴承的径向负荷比悬臂式的要减小至1/5 1/7。齿轮承载能力较悬臂式可提高10%左右。此外,由于大端一侧的前轴承及后轴承之间的距离很小,可以缩短主动锥齿轮轴

33、的长度,使布置更紧凑,这有利于减小传动轴夹角及整车布置。起码是支承的导向轴承都采用圆柱滚子式的,并且其内外圈可以分离(有时不带内圈),以利于拆装。为了进一步增强刚度,应尽可能地减小齿轮大端一侧的两轴承间的距离,增大支承轴径,适当提高轴承的配合紧度。 图3.2 主减速器主动齿轮的支承形式及安置方法(a)悬臂式支承 (b)骑马式支承装载质量为2t以上的汽车主减速器主动齿轮都是采用骑马式支承,因为在传递较大的转矩的情况下悬臂式支撑难以满足支撑刚度的要求。但是骑马式支承增加了导向轴承支座,是主减速器结构复杂,加工成本提高。在本设计中,由于我们设计的重型载重汽车,由工作条件决定的采用骑马式支承。2、主减

34、速器从动锥齿轮的支承型式及安置方法主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在轴承之间的分布即载荷离两端轴承支承中心间的距离c和d(见图3.3)之比例而定。为了增强支承刚度,支承间的距离应尽量缩小。然而,为了使从动锥齿轮背面的支承凸缘有足够的位置设置加强筋(一般不应少于6条,切应一直延伸到差速器轴承座近处)及增强支承的稳定性,距离()应不小于从动锥齿轮节圆直径的70。两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,小端相背朝外。为了使载荷能尽量均匀分布在两个轴承上,并且让出位置来加强从动锥齿轮连接凸缘的刚性,应尽量使尺寸c等于或大于尺寸。为了防止从动齿轮在轴

35、向载荷作用下的偏移,圆锥滚子轴承也应预紧。由于从动锥齿轮轴承是装在差速器壳上,尺寸较大,足以保证刚度。球面圆锥滚子轴承(见图3.3(b)具有自动调位的性能,对轴的歪斜的敏感性较小,这一点当主减速器从动齿轮轴承的尺寸大时极为重要。向心推力轴承不需要调整,但仅见于某些小排量轿车的主减速器中(图3.3(c)。只有当采用直齿或人字齿圆柱齿轮时,由于无轴向力,双级主减速器从动齿轮才可以安装在向心球轴承上(见图3.3(d)。图3.3 主减速器从动锥齿轮的支承型式及安置方法轿车和轻型货车汽车主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差速器壳的突缘上(见图3.3(a)(b)。这种方法

36、对增强刚性效果较好,中型和重型汽车主减速从动锥齿轮多采用有辐式结构并有螺栓或铆钉与差速器壳突缘连结(见图3.3(c)。(a) (b) (c)图3.4 主减速器从动锥齿轮的止推装置当从动锥齿轮的径向尺寸较大时,在大的负荷下会产生较大的变形,这是常采用能限制从动锥齿轮因受轴向力而产生便宜的止推装置,对从动锥齿轮的外缘背面加以支承。图3.4(a)(b)(c)分别为不可调整的(由销及青铜止推板组成)、可调整的(由青铜止推块及调整螺栓组成)和滚轮式的止推装置结构图。止推装置的支承面位置应进行计算,其正确位置应使当从动锥齿轮在载荷作用下的偏移量达到容许极限时,即与从动锥齿轮背面接触,以制止从动锥齿轮继续变

37、形。主减速器主、从动锥齿轮在载荷作用下的偏移量容许极限值见图3.5。由该图可知,支撑面与从动锥齿轮背面间的安装间隙应不大于0.25mm。图3.5 在载荷作用下主减速器锥齿轮的容许极限偏移量3、主减速的轴承预紧及齿轮啮合调整支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式,载荷大小,轴承刚度特性及使用转速有关。主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴间之间的调整垫片等方法进行。近年来采用波形套筒调整轴承预紧度极为方便。波形套筒安装在两轴承内圈间或轴承与轴肩间。其上有波纹区或其他易产生轴

38、向变形的部分。因该区段的曲线平坦而使轴承预紧度保持在规定范围内。但每拆装一次需在套的一端加装一薄垫片,以使波形套再次在塑性区工作。波形套由冷拨低碳无缝钢管制造。一个新的波形套拆装3、4次就会因塑性太小而报废。主减速器从动锥齿轮轴承的预紧是用轴承外侧的调整螺母、或差速器壳与轴承间的调整垫片、或主减速壳与轴承盖间的调整垫片进行调整。在调整轴承预紧度之后,还应进行主减速器齿轮的啮合调整。因齿面接触区和齿侧间隙的正确调整是保证齿轮正确啮合、运转平稳和延长齿轮寿命的重要条件。为此,在齿轮支承的结构上应保证主、从动齿轮能进行轴向调整。可采用增减主减速器壳与轴承座之间的调整垫片或增减主动锥齿轮与其后轴承间的

39、调整垫片等方法对主动锥齿轮作轴向调整。3.1.3 主减速器的减速型式主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。减速器的选择与汽车的类型及使用条件有关,有时也与制造厂已有的产品系列及制造条件有关,但它主要取决于由动力性,经济性等整车性能所要求的主减速比的大小及驱动桥下的离地间隙、驱动桥的数目及布置型式等。(1)单级主减速器如图3.6所示为单级主减速器。由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广泛用在主减速比7.6的各种中、小型汽车上。单级主减速器都是采用一对螺旋锥齿轮或双曲面齿轮,也有采用蜗轮传动的。 图3.6单级主减

40、速器 图3.7双级主减速器 图3.8双速主减速器(2)双级减速如图3.7所示为双级主减速器。由两级齿轮减速器组成,结构复杂、质量加大,制造成本也显著增加,因此仅用于主减速比较大()且采用单级减速不能满足既定的主减速比和离地间隙要求的重型汽车上,本车不采用。(3)双速主减速器如图3.8,用于载荷及道路状况变化大、使用条件非常复杂的重型载货汽车。会加大驱动桥的质量,提高制造成本,并要增设较复杂的操纵装置所以本车不采用。(4)单级(或双级)主减速器附轮边减速器矿山、水利及其他大型工程等所用的重型汽车,工程和军事上用的重型牵引越野汽车及大型公共汽车等,要求有高的动力性,而车速则可相对较低,因此其传动系

41、的低档总传动比都很大。在设计上述重型汽车、大型公共汽车的驱动桥时,为了使变速器、分动器、传动轴等总成不致因承受过大转矩而使它们的尺寸及质量过大,应将传动系的传动比以尽可能大的比率分配给驱动桥。这就导致了一些重型汽车、大型公共汽车的驱动桥的主减速比往往要求很大。当其值大于12时,则需采用单级(或双级)主减速器附加轮边减速器的结构型式,将驱动桥的一部分减速比分配给安装在轮毂中间或近旁的轮边减速器。这样以来,不仅使驱动桥中间部分主减速器的轮廓尺寸减小,)有关,而与汽车预期寿命期间出现的峰值载荷关系不大。汽车驱动桥的最大输出转矩和最大附着转矩并不是使用中的持续载荷,强度计算时只能用它来验算最大应力,不

42、能作为疲劳损坏的依据。2、单位齿长上的圆周力在汽车主减速器齿轮的表面耐磨性,常常用其在轮齿上的假定单位压力即单位齿长圆周力来估算,即: (3.32)式中:作用在齿轮上的圆周力,按发动机最大转矩和最大附着力矩 两种载荷工况进行计算,N; 从动齿轮的齿面宽。 (a) 按发动机最大转矩计算时: (3.33)式中:发动机输出的最大转矩,在此取1500N.m 变速器的传动比12.11 主动齿轮节圆直径168mm从动齿轮齿面宽46mm按上式等于470.6Nmm(a) 按最大附着力矩计算时: (3.33)式中: 汽车满载时一个驱动桥给水平地面的最大负荷,对于后驱动桥还应考虑汽车最大加速时的负荷增加量,在此取

43、N; 轮胎与地面的附着系数,在此取0.85; 轮胎的滚动半径0.512m。按上式等于814.41Nmm。在现代汽车的设计中,由于材质及加工工艺等制造质量的提高,单位齿长上的圆周力有时提高许用数据的20%25%。载货汽车许用圆周力为1429N/mm,经验算以上两数据都在许用范围内。3、轮齿的弯曲强度计算汽车主减速器锥齿轮的齿根弯曲应力为 (3.35)式中: 该齿轮的计算转矩为8174.25Nm;超载系数;在此取1.0; 尺寸系数,反映材料的不均匀性,与齿轮尺寸和热处理有关时,在此等于1.0; 载荷分配系数,当两个齿轮均用骑马式支承型式时,1.001.10当一个齿轮用骑马式式支承时取1.101.2

44、5。支承刚度大时取最小值;质量系数,对于汽车驱动桥齿轮,当齿轮接触良好,周节及径向跳动精度高时,可取1.0;计算齿轮的齿数;端面模数;计算齿轮齿面宽;计算弯曲应力的综合系数(或几何系数),它综合考虑了齿形系数。载荷作用点的位置、载荷在齿间的分布、有效齿面宽、应力集中系数及惯性系数等对弯曲应力计算的影响。计算弯曲应力时本应采用轮齿中点圆周力与中点端面模数,今用大端模数,而在综合系数中进行修正。按图(3.14)选取小齿轮的0.296,大齿轮0.258。 按最小转矩计算时,汽车主减速器齿轮的许用弯曲应力为700MPa,按平均转矩计算时,许用弯曲应力为210.9Mpa。按上式所以主减速器齿轮满足弯曲强

45、度要求。汽车主减速器的损坏形式主要是疲劳损坏,而疲劳寿命主要与日常行驶转矩即平均转矩有关,或,只能用来检验最大应力,不能作为疲劳寿命的计算依据。图3.14弯曲计算用综合系数,用于平均压力角为2230,的双曲面齿轮4、轮齿的表面接触强度计算双曲面齿轮的齿面接触应力为 (3.36) 式中:主动齿轮的计算转矩;材料的弹性系数,对于钢制齿轮副取232.6/mm;齿轮的齿面宽54;,见前式的说明; 尺寸系数,它考虑了齿轮的尺寸对其淬透性的影响,在缺乏经验的情况下,可取1.0; 表面质量系数,决定于齿面最后加工的性质(如铣齿,磨齿等),即表面粗糙度及表面覆盖层的性质(如镀铜,磷化处理等)。一般情况下,对于

46、制造精确的齿轮可取1.0; 计算接触应力的综合系数(或称几何系数)。它综合考虑了啮合齿面的相对曲率半径、载荷作用的位置、轮齿间的载荷分配系数、有效尺宽及惯性系数的因素的影响。看图3.15取0.225。图3.15接触强度计算用综合系数,用于平均压力角为2230,的双曲面齿轮主、从动齿轮的接触应力是相同的。当按计算时,许用接触应力为1750MPa;当按,两者中的较小者计算时,许用接触应力为2800MPa。计算时,应将上述计算转矩换算到主动齿轮上。按上式计算=1679 1750 N/主、从动齿轮的齿面接触应力相等。所以均满足要求。3.5 减速器轴承的计算轴承的计算主要是计算轴承的寿命。设计时,通常是

47、先根据主减速器的结构尺寸初步确定轴承的型号,然后验算轴承寿命。影响轴承寿命的主要外因是它的工作载荷及工作条件,因此在验算轴承寿命之前,应先求出作用在齿轮上的轴向力、径向力、圆周力,然后再求出轴承反力,以确定轴承载荷。3.5.1计算转矩的确定锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切向方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。为计算作用在齿轮的圆周力,首先需要确定计算转矩。汽车在行驶过程中,由于变速器挡位的改变,且发动机也不全处于最大转矩状态,故主减速器齿轮的工作转矩处于经常变化中。实践表明,轴承的主要损坏形式为疲劳损伤,所以应按输入的当量转

48、矩进行计算。作用在主减速器主动锥齿轮上的当量转矩可按下式计算: (3.37)式中: 发动机最大转矩,在此取1500Nm; ,变速器在各挡的使用率,可参考表3.6选取; ,变速器各挡的传动比; ,变速器在各挡时的发动机的利用率。表3.6 变速器处于各档时的发动机转矩利用率车型速变位档器 轿 车公共汽车载货汽车档档档档带超速档档档带超速档档/607065707050505060656070706060605060506060707070 60506060607070 60超速档 75 70 3.5.2主减速器主动齿轮上受力型式 图3.16给出了主减速器主动齿轮的受力简图。如图所示,一左旋小齿轮顺时针旋转,M为节锥齿线的终点,在传递转矩时在M点齿廓表面受一空间法向力N,过M点及该点节锥母线做一节锥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论